IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7479-d1275742.html
   My bibliography  Save this article

A Pragmatic Approach to the Economic Assessment of Green Synthetic Methane Power in the Baltics

Author

Listed:
  • Antans Sauhats

    (Faculty of Electrical and Environmental Engineering, Institute of Power Engineering, Riga Technical University, 1048 Riga, Latvia)

  • Roman Petrichenko

    (Faculty of Electrical and Environmental Engineering, Institute of Power Engineering, Riga Technical University, 1048 Riga, Latvia)

  • Marija Zima-Bockarjova

    (ABB Electrification, ABB Switzerland Ltd., Bruggerstrasse 72, 5400 Baden, Switzerland)

Abstract

The synthesis of methane from hydrogen and carbon dioxide creates an energy resource that is suitable for long-term storage. Once this process is powered by renewable electricity, it produces a clean fuel for producing electricity and heat and supports large-scale renewable energy deployment, energy transition and climate change mitigation. This paper proposes a pragmatic approach to assessing the economic potential of synthetic methane-based power. Today, natural gas plays an important role in the Baltic region due to the existing infrastructure, which includes a transmission and distribution pipeline network, gas power plants and a large underground storage reservoir. Replacing natural gas with synthetic methane would fulfil carbon emission reduction ambitions. In this paper, we simulate electricity producers’ actions at market conditions and consider the generation portfolio in the Baltics and the interconnections with Scandinavia and Poland operating in the NORDPOOL electricity market. As a result of these calculations, we obtain the volume of the synthetic gas, the production costs, the volume of gas storage, the installed capacity of the gas power plant, and the investments required to ensure energy transition and system adequacy. These results are essential for the informed decisions made by policymakers, investors and system operators.

Suggested Citation

  • Antans Sauhats & Roman Petrichenko & Marija Zima-Bockarjova, 2023. "A Pragmatic Approach to the Economic Assessment of Green Synthetic Methane Power in the Baltics," Energies, MDPI, vol. 16(22), pages 1-26, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7479-:d:1275742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    3. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    4. Yi Lin & Wei Lin & Wei Wu & Zhenshan Zhu, 2023. "Optimal Scheduling of Power Systems with High Proportions of Renewable Energy Accounting for Operational Flexibility," Energies, MDPI, vol. 16(14), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Ruchi & Rüdisüli, Martin & Patel, Martin Kumar & Parra, David, 2022. "Smart power-to-gas deployment strategies informed by spatially explicit cost and value models," Applied Energy, Elsevier, vol. 327(C).
    2. Alvin Henao & Luceny Guzman, 2024. "Exploration of Alternatives to Reduce the Gap in Access to Electricity in Rural Communities—Las Nubes Village Case (Barranquilla, Colombia)," Energies, MDPI, vol. 17(1), pages 1-19, January.
    3. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    4. Ciuła, Józef & Generowicz, Agnieszka & Gronba-Chyła, Anna & Kwaśnicki, Paweł & Makara, Agnieszka & Kowalski, Zygmunt & Wiewiórska, Iwona, 2024. "Energy production from landfill gas, emissions and pollution indicators–Opportunities and barriers to implementing circular economy," Energy, Elsevier, vol. 308(C).
    5. Kledja Canaj & Andi Mehmeti & Julio Berbel, 2021. "The Economics of Fruit and Vegetable Production Irrigated with Reclaimed Water Incorporating the Hidden Costs of Life Cycle Environmental Impacts," Resources, MDPI, vol. 10(9), pages 1-13, September.
    6. Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
    7. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    8. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    9. Bae, Dasol & Kim, Yikyeom & Ko, Eun Hee & Ju Han, Seung & Lee, Jae W. & Kim, Minkyu & Kang, Dohyung, 2023. "Methane pyrolysis and carbon formation mechanisms in molten manganese chloride mixtures," Applied Energy, Elsevier, vol. 336(C).
    10. Sara Domínguez & Bernay Cifuentes & Felipe Bustamante & Nelly M. Cantillo & César L. Barraza-Botet & Martha Cobo, 2022. "On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    11. Szabolcs Szima & Calin-Cristian Cormos, 2021. "CO 2 Utilization Technologies: A Techno-Economic Analysis for Synthetic Natural Gas Production," Energies, MDPI, vol. 14(5), pages 1-18, February.
    12. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    14. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    15. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).
    16. Daniele Candelaresi & Linda Moretti & Alessandra Perna & Giuseppe Spazzafumo, 2021. "Heat Recovery from a PtSNG Plant Coupled with Wind Energy," Energies, MDPI, vol. 14(22), pages 1-21, November.
    17. Mengyang Fan & Rui Kai Miao & Pengfei Ou & Yi Xu & Zih-Yi Lin & Tsung-Ju Lee & Sung-Fu Hung & Ke Xie & Jianan Erick Huang & Weiyan Ni & Jun Li & Yong Zhao & Adnan Ozden & Colin P. O’Brien & Yuanjun Ch, 2023. "Single-site decorated copper enables energy- and carbon-efficient CO2 methanation in acidic conditions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Taehun Kim & Won-Yong Lee & Seok-Ho Seo & Si-Doek Oh & Ho-Young Kwak, 2023. "Energy, Exergy and Thermoeconomic Analyses on Hydrogen Production Systems Using High-Temperature Gas-Cooled and Water-Cooled Nuclear Reactors," Energies, MDPI, vol. 16(24), pages 1-27, December.
    19. Rishabh Agarwal, 2022. "Economic Analysis of Renewable Power-to-Gas in Norway," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    20. Francisco L. D. Simões & Diogo M. F. Santos, 2024. "A SWOT Analysis of the Green Hydrogen Market," Energies, MDPI, vol. 17(13), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7479-:d:1275742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.