IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7120-d1261391.html
   My bibliography  Save this article

Reducing the Flow Maldistribution in Heat Exchangers through a Novel Polymer Manifold: Numerical Evaluation

Author

Listed:
  • Mingkan Zhang

    (Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA)

  • Cheng-Min Yang

    (Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA)

  • Kai Li

    (Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA)

  • Kashif Nawaz

    (Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA)

Abstract

The maldistribution of working fluid is one of the issues in heat exchangers that causes a reduction in performance of not only the heat exchanger but also the entire HVAC system. One of the methods to reduce such maldistribution is to improve manifold design to evenly distribute the flow. In the present work, an advanced maldistribution reduction manifold, which was based on a preliminary maldistribution reduction manifold, was designed to further improve the flow distribution in the heat exchanger. In the design, spiral baffles are used to create vortices in the tubes to regulate the flow in each tube. The design also keeps the tubes away from the manifold inlet to avoid direct flow from the inlet. Due to the complexity, the design of the advanced maldistribution reduction manifold is for AM only, which cannot be fabricated by traditional manufacturing. To evaluate the design, a computational fluid dynamic model is developed to study flow distribution in heat exchanger manifolds. The simulation results reveal that the relative standard deviation of the tubes in the advanced maldistribution reduction design is half of the preliminary maldistribution reduction design and about 1/20 of the reference design.

Suggested Citation

  • Mingkan Zhang & Cheng-Min Yang & Kai Li & Kashif Nawaz, 2023. "Reducing the Flow Maldistribution in Heat Exchangers through a Novel Polymer Manifold: Numerical Evaluation," Energies, MDPI, vol. 16(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7120-:d:1261391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang Peng & Denghong Li & Jiquan Li & Shaofei Jiang & Qilong Gao, 2020. "Improvement of Flow Distribution by New Inlet Header Configuration with Splitter Plates for Plate-Fin Heat Exchanger," Energies, MDPI, vol. 13(6), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalia Rydalina & Elena Antonova & Irina Akhmetova & Svetlana Ilyashenko & Olga Afanaseva & Vincenzo Bianco & Alexander Fedyukhin, 2020. "Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems," Energies, MDPI, vol. 13(22), pages 1-13, November.
    2. Kyung Rae Kim & Jae Keun Lee & Hae Do Jeong & Yul Ho Kang & Young Chull Ahn, 2020. "Numerical and Experimental Study of Air-to-Air Plate Heat Exchangers with Plain and Offset Strip Fin Shapes," Energies, MDPI, vol. 13(21), pages 1-13, October.
    3. Azeez mohammed Hussein, Hind & Zulkifli, Rozli & Faizal Bin Wan Mahmood, Wan Mohd & Ajeel, Raheem K., 2022. "Structure parameters and designs and their impact on performance of different heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Mustansar Hayat Saggu & Nadeem Ahmed Sheikh & Usama Muhammad Niazi & Muhammad Irfan & Adam Glowacz, 2020. "Predicting the Structural Reliability of LNG Processing Plate-Fin Heat Exchanger for Energy Conservation," Energies, MDPI, vol. 13(9), pages 1-22, May.
    5. Mustansar Hayat Saggu & Nadeem Ahmed Sheikh & Usama Muhamad Niazi & Muhammad Irfan & Adam Glowacz & Stanislaw Legutko, 2020. "Improved Analysis on the Fin Reliability of a Plate Fin Heat Exchanger for Usage in LNG Applications," Energies, MDPI, vol. 13(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7120-:d:1261391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.