IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7085-d1259461.html
   My bibliography  Save this article

The Shockley–Queisser Efficiency Limit of Solar Thermophotovoltaic (STPV) Cells Using Different Photovoltaic Cells and a Radiation Shield Considering the Étendue of Solar Radiation

Author

Listed:
  • Sy-Bor Wen

    (J. Mike Walker ’66 Department of Mechanical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA)

  • Arun Bhaskar

    (J. Mike Walker ’66 Department of Mechanical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA)

Abstract

A theoretical model is developed to determine the Shockley–Queisser efficiency limit of solar thermophotovoltaic (STPV) cells with single- or double-junction photovoltaic (PV) cells and a simple radiation shield considering the divergence nature of concentrated solar radiation. A combination of adaptive parametric sweep and graphic-based methods is developed to solve the highly nonlinear correlations of energy and carrier transports in the theoretical model to find the optimized operating conditions of STPVs with high stability. The theoretical model predicts that the Shockley–Queisser efficiency limit of STPV under 1000× solar concentration and a simple radiation shield is ~50.1% with InGaAsSb PV cells, ~49.1% with GaSb PV cells, and ~53.2% with InGaAsSb/GaSb double-junction PV cells. The operating temperatures are ~1719.5 K, ~1794.1 K, and 1640.0 K, respectively. An observation from the modeling is that the energy loss due to the thermalization of hot carriers in the STPV with spectrally selected emitters is ~40% less than that in single-junction solar cells. Also determined from the modeling is that ~20% of the collected solar energy is still lost through thermal radiation, even with a simple radiation shield to block the radiative heat loss to the surroundings. Following this understanding, a further improvement in the Shockley–Queisser efficiency of STPVs can be achieved by adopting advanced designs of radiation shields that can separate the absorber of the STPVs far away from the aperture of the radiation shield without using a large-area absorber.

Suggested Citation

  • Sy-Bor Wen & Arun Bhaskar, 2023. "The Shockley–Queisser Efficiency Limit of Solar Thermophotovoltaic (STPV) Cells Using Different Photovoltaic Cells and a Radiation Shield Considering the Étendue of Solar Radiation," Energies, MDPI, vol. 16(20), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7085-:d:1259461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David M. Bierman & Andrej Lenert & Walker R. Chan & Bikram Bhatia & Ivan Celanović & Marin Soljačić & Evelyn N. Wang, 2016. "Enhanced photovoltaic energy conversion using thermally based spectral shaping," Nature Energy, Nature, vol. 1(6), pages 1-7, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian Zhou & Zhiqiang Sun & Saiwei Li & Huawei Liu & Danqing Yi, 2016. "Design and Optimization of Thermophotovoltaic System Cavity with Mirrors," Energies, MDPI, vol. 9(9), pages 1-11, September.
    2. Zhang, Tao & Li, Yiteng & Chen, Yin & Feng, Xiaoyu & Zhu, Xingyu & Chen, Zhangxing & Yao, Jun & Zheng, Yongchun & Cai, Jianchao & Song, Hongqing & Sun, Shuyu, 2021. "Review on space energy," Applied Energy, Elsevier, vol. 292(C).
    3. Zhang, Ge & Cottrill, Anton L. & Koman, Volodymyr B. & Liu, Albert Tianxiang & Mahajan, Sayalee G. & Piephoff, D. Evan & Strano, Michael S., 2020. "Persistent, single-polarity energy harvesting from ambient thermal fluctuations using a thermal resonance device with thermal diodes," Applied Energy, Elsevier, vol. 280(C).
    4. Lin, Chungwei & Wang, Bingnan & Teo, Koon Hoo & Zhang, Zhuomin, 2018. "A coherent description of thermal radiative devices and its application on the near-field negative electroluminescent cooling," Energy, Elsevier, vol. 147(C), pages 177-186.
    5. Cottrill, Anton L. & Zhang, Ge & Liu, Albert Tianxiang & Bakytbekov, Azamat & Silmore, Kevin S. & Koman, Volodymyr B. & Shamim, Atif & Strano, Michael S., 2019. "Persistent energy harvesting in the harsh desert environment using a thermal resonance device: Design, testing, and analysis," Applied Energy, Elsevier, vol. 235(C), pages 1514-1523.
    6. J. Enrique Vázquez-Lozano & Iñigo Liberal, 2023. "Incandescent temporal metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Fangqi Chen & Xiaojie Liu & Yanpei Tian & Jon Goldsby & Yi Zheng, 2022. "Refractory All-Ceramic Thermal Emitter for High-Temperature Near-Field Thermophotovoltaics," Energies, MDPI, vol. 15(5), pages 1-9, March.
    8. Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7085-:d:1259461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.