IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p543-d1023836.html
   My bibliography  Save this article

Constructing a Database of Reference Hydrothermal Sources for a Zero-Energy Building Certification Rating in South Korea and Analyzing the Renewable Energy Self-Sufficiency Rate Achieved by Water-Source Heat Pumps

Author

Listed:
  • Yeweon Kim

    (Building Energy Research Department, Korea Institute of Civil Engineering and Building Technology, Ilsan 10223, Republic of Korea)

  • Ki-Hyung Yu

    (Building Energy Research Department, Korea Institute of Civil Engineering and Building Technology, Ilsan 10223, Republic of Korea)

Abstract

This study aims to institutionalize an evaluation methodology to assess water-source heat pumps (WSHPs) when designing a zero-energy building. Thus, regions where zero-energy buildings were designed were subdivided into 66 sub-regions, thereby standardizing the temperatures on the source side of WSHPs using river water and pipeline water. Based on these data, ground-source and water-source heat pump system-based simulation (new and renewable energy self-sufficiency rate compared to building energy consumption) values were derived for cases whose condition (region or heat source) was different among the buildings certified as zero-energy buildings. The application of the standard meteorological data and reference hydrothermal data to the ECO2 program and outcome evaluation led to the following findings: in all cases (reference: Seoul), ground-source heat pumps (GSHPs) showed a higher self-sufficiency rate than WSHPs (ground source > pipeline water > river water). The self-sufficiency rate of GSHPs was 11–33% higher than that of WSHPs. In a regional comparison among the cold (Jeongseon), central (Seoul), and southern (Jeju Island) regions, WSHPs exhibited higher energy self-sufficiency rates than GSHPs under the conditions of higher water temperatures in winter and lower water temperatures in summer, as in the southern region.

Suggested Citation

  • Yeweon Kim & Ki-Hyung Yu, 2023. "Constructing a Database of Reference Hydrothermal Sources for a Zero-Energy Building Certification Rating in South Korea and Analyzing the Renewable Energy Self-Sufficiency Rate Achieved by Water-Sour," Energies, MDPI, vol. 16(1), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:543-:d:1023836
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lund, Rasmus & Persson, Urban, 2016. "Mapping of potential heat sources for heat pumps for district heating in Denmark," Energy, Elsevier, vol. 110(C), pages 129-138.
    2. Zhu, Na & Hu, Pingfang & Wang, Wei & Yu, Jianming & Lei, Fei, 2015. "Performance analysis of ground water-source heat pump system with improved control strategies for building retrofit," Renewable Energy, Elsevier, vol. 80(C), pages 324-330.
    3. Hunt, Julian David & Byers, Edward & Sánchez, Antonio Santos, 2019. "Technical potential and cost estimates for seawater air conditioning," Energy, Elsevier, vol. 166(C), pages 979-988.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    2. Li, Xiang & Yilmaz, Selin & Patel, Martin K. & Chambers, Jonathan, 2023. "Techno-economic analysis of fifth-generation district heating and cooling combined with seasonal borehole thermal energy storage," Energy, Elsevier, vol. 285(C).
    3. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
    4. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    5. Pauli Hiltunen & Sanna Syri, 2020. "Highly Renewable District Heat for Espoo Utilizing Waste Heat Sources," Energies, MDPI, vol. 13(14), pages 1-21, July.
    6. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    7. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Blumberga, Dagnija, 2017. "Sustainability of heat energy tariff in district heating system: Statistic and dynamic methodologies," Energy, Elsevier, vol. 137(C), pages 834-845.
    8. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
    9. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    10. Luo, Ao & Fang, Hao & Xia, Jianjun & Lin, Borong & jiang, Yi, 2017. "Mapping potentials of low-grade industrial waste heat in Northern China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 335-348.
    11. Halilovic, Smajil & Odersky, Leonhard & Hamacher, Thomas, 2022. "Integration of groundwater heat pumps into energy system optimization models," Energy, Elsevier, vol. 238(PA).
    12. Andrei David & Brian Vad Mathiesen & Helge Averfalk & Sven Werner & Henrik Lund, 2017. "Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems," Energies, MDPI, vol. 10(4), pages 1-18, April.
    13. Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
    14. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
    15. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    16. Rämä, M. & Mohammadi, S., 2017. "Comparison of distributed and centralised integration of solar heat in a district heating system," Energy, Elsevier, vol. 137(C), pages 649-660.
    17. Wang, Dan-Yi & Wang, Xueqing & Ding, Ru-Xi, 2022. "Welfare maximization with the least subsidy: Pricing model for surface water loop heat pump PPP projects considering occupancy rate growth and coefficient of performance," Renewable Energy, Elsevier, vol. 194(C), pages 1131-1141.
    18. Stegnar, Gašper & Staničić, D. & Česen, M. & Čižman, J. & Pestotnik, S. & Prestor, J. & Urbančič, A. & Merše, S., 2019. "A framework for assessing the technical and economic potential of shallow geothermal energy in individual and district heating systems: A case study of Slovenia," Energy, Elsevier, vol. 180(C), pages 405-420.
    19. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    20. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:543-:d:1023836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.