IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p507-d1022937.html
   My bibliography  Save this article

Application of the Navigational Air-Sea Methane Exchange Flux Observation System in the Qiongdongnan Basin of the Northern South China Sea

Author

Listed:
  • Chao Zhong

    (Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
    National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou 511458, China)

  • Jing’an Lu

    (Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
    National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou 511458, China)

  • Dongju Kang

    (Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
    National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou 511458, China)

  • Qianyong Liang

    (Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
    National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou 511458, China)

Abstract

The sources and sinks of dissolved CH 4 in offshore waters are becoming diversified with the rapid increase in human activities. The concentration and air–sea exchange flux of dissolved CH 4 present new characteristics of more intense spatiotemporal evolution, and the contribution to atmospheric CH 4 continues to increase. Herein, a new model based on navigable air–sea exchange flux observations was proposed, which replaced the traditional station-based sampling analysis and testing method, realizing the synchronous measurement of methane in the atmosphere and surface seawater carried by ships. Based on the Marine Geological Survey project of the China Geological Survey, comprehensive environmental surveys were conducted in April 2018, September 2018, and June 2019 in the Qiongdongnan area in the northern part of the South China Sea, and the dissolved methane content in the sea surface atmosphere and surface seawaters in 2019 were simultaneously obtained. The methane exchange flux ranges of the southeastern sea area were calculated as −0.001~−0.0023 μmol·m −2 ·d −1 and −0.00164~−0.00395 μmol·m −2 ·d −1 by using the Liss and Merlivat formula (LM86), the Wanninkhof formula (W92), and the field-measured wind speed. The feasibility of the navigational air–sea methane exchange flux observation system was proven in a sea trial, and the measurement accuracy and observation efficiency of air-sea flux were improved with the designed system, providing a new technical means for further research on multiscale air–sea interactions and global climate change.

Suggested Citation

  • Chao Zhong & Jing’an Lu & Dongju Kang & Qianyong Liang, 2023. "Application of the Navigational Air-Sea Methane Exchange Flux Observation System in the Qiongdongnan Basin of the Northern South China Sea," Energies, MDPI, vol. 16(1), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:507-:d:1022937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/507/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/507/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Bo & Chen, G.Q., 2010. "Methane emissions by Chinese economy: Inventory and embodiment analysis," Energy Policy, Elsevier, vol. 38(8), pages 4304-4316, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongkang Yang & Qiaoyi Du & Chenlong Wang & Yu Bai, 2020. "Research on the Method of Methane Emission Prediction Using Improved Grey Radial Basis Function Neural Network Model," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    3. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    4. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    5. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    6. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    7. Zhang, Bo & Chen, Z.M. & Xia, X.H. & Xu, X.Y. & Chen, Y.B., 2013. "The impact of domestic trade on China's regional energy uses: A multi-regional input–output modeling," Energy Policy, Elsevier, vol. 63(C), pages 1169-1181.
    8. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
    9. Shao, Ling & Wu, Zi & Zeng, L. & Chen, Z.M. & Zhou, Y. & Chen, G.Q., 2013. "Embodied energy assessment for ecological wastewater treatment by a constructed wetland," Ecological Modelling, Elsevier, vol. 252(C), pages 63-71.
    10. Chen, Z.M. & Chen, G.Q., 2011. "Embodied carbon dioxide emission at supra-national scale: A coalition analysis for G7, BRIC, and the rest of the world," Energy Policy, Elsevier, vol. 39(5), pages 2899-2909, May.
    11. Zhang, Bo & Chen, G.Q., 2014. "Methane emissions in China 2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 886-902.
    12. Anyu Zhu & Qifei Wang & Dongqiao Liu & Yihan Zhao, 2022. "Analysis of the Characteristics of CH 4 Emissions in China’s Coal Mining Industry and Research on Emission Reduction Measures," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
    13. Li, J.S. & Chen, G.Q. & Chen, B. & Yang, Q. & Wei, W.D. & Wang, P. & Dong, K.Q. & Chen, H.P., 2017. "The impact of trade on fuel-related mercury emissions in Beijing—evidence from three-scale input-output analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 742-752.
    14. Haidi Gao & Alun Gu & Gehua Wang & Fei Teng, 2019. "A Structural Decomposition Analysis of China’s Consumption-Based Greenhouse Gas Emissions," Energies, MDPI, vol. 12(15), pages 1-17, July.
    15. Li, J.S. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2015. "Mercury emissions by Beijing׳s fossil energy consumption: Based on environmentally extended input–output analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1167-1175.
    16. Xia, X.H. & Chen, Y.B. & Li, J.S. & Tasawar, H. & Alsaedi, A. & Chen, G.Q., 2014. "Energy regulation in China: Objective selection, potential assessment and responsibility sharing by partial frontier analysis," Energy Policy, Elsevier, vol. 66(C), pages 292-302.
    17. Chen, B. & Yang, Q. & Li, J.S. & Chen, G.Q., 2017. "Decoupling analysis on energy consumption, embodied GHG emissions and economic growth — The case study of Macao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 662-672.
    18. Li, J.S. & Chen, G.Q., 2013. "Energy and greenhouse gas emissions review for Macao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 23-32.
    19. Li, J.S. & Alsaed, A. & Hayat, T. & Chen, G.Q., 2014. "Energy and carbon emission review for Macao's gaming industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 744-753.
    20. Tao Ding & Yadong Ning & Yan Zhang, 2017. "Estimation of greenhouse gas emissions in China 1990–2013," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(6), pages 1097-1115, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:507-:d:1022937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.