IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p489-d1022642.html
   My bibliography  Save this article

Experimentally Validated Modelling of an Oscillating Diaphragm Compressor for Chemisorption Energy Technology Applications

Author

Listed:
  • Ahmad Najjaran

    (Department of Engineering, Durham University, Durham DH1 3LE, UK)

  • Saleh Meibodi

    (Department of Engineering, Durham University, Durham DH1 3LE, UK)

  • Zhiwei Ma

    (Department of Engineering, Durham University, Durham DH1 3LE, UK)

  • Huashan Bao

    (Department of Engineering, Durham University, Durham DH1 3LE, UK)

  • Tony Roskilly

    (Department of Engineering, Durham University, Durham DH1 3LE, UK)

Abstract

This study presents a detailed dynamic modelling and generic simulation method of an oscillating diaphragm compressor for chemisorption energy technology applications. The geometric models of the compressor were developed step by step, including the diaphragm movement, compressor dimensions, chamber areas and volumes and so on. The detailed mathematical model representing the geometry and kinematics of the diaphragm compressor was combined with the motion equation, heat transfer equation and energy balance equation to complete the compressor modelling. This combination enables the novel compressor model to simultaneously handle the simulation of momentum and energy balance of the diagram compressor. Furthermore, an experimental apparatus was set up to investigate and validate the present modelling and the simulation method. The performance of the compressor was experimentally evaluated in terms of the mass flow rate of the compressor at various compression ratios. Additionally, the effects of different parameters such as the inlet temperature and ambient temperature at various compressor ratios on the compressor performance were investigated. It was found reducing the inlet temperature from 40 to 5 °C at a constant pressure results in the enhancement of the compressor flow rate up to 14.7%. The compressor model proposed and developed in this study is shown to be not only able to accurately deal with the complexity of the dynamic behaviour of the compressor working flow but is also capable of effectively representing diaphragm compressors for analysis and optimisation purposes in various applications.

Suggested Citation

  • Ahmad Najjaran & Saleh Meibodi & Zhiwei Ma & Huashan Bao & Tony Roskilly, 2023. "Experimentally Validated Modelling of an Oscillating Diaphragm Compressor for Chemisorption Energy Technology Applications," Energies, MDPI, vol. 16(1), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:489-:d:1022642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manca Ocvirk & Alenka Ristić & Nataša Zabukovec Logar, 2021. "Synthesis of Mesoporous γ-Alumina Support for Water Composite Sorbents for Low Temperature Sorption Heat Storage," Energies, MDPI, vol. 14(22), pages 1-15, November.
    2. Bianchi, Giuseppe & Cipollone, Roberto, 2015. "Theoretical modeling and experimental investigations for the improvement of the mechanical efficiency in sliding vane rotary compressors," Applied Energy, Elsevier, vol. 142(C), pages 95-107.
    3. Zhao, Yongning & Xu, Xiandong & Qadrdan, Meysam & Wu, Jianzhong, 2021. "Optimal operation of compressor units in gas networks to provide flexibility to power systems," Applied Energy, Elsevier, vol. 290(C).
    4. Tirnovan, R. & Giurgea, S. & Miraoui, A. & Cirrincione, M., 2008. "Surrogate modelling of compressor characteristics for fuel-cell applications," Applied Energy, Elsevier, vol. 85(5), pages 394-403, May.
    5. Bao, Huashan & Ma, Zhiwei & Roskilly, Anthony Paul, 2017. "An optimised chemisorption cycle for power generation using low grade heat," Applied Energy, Elsevier, vol. 186(P3), pages 251-261.
    6. Oh, Seungjae & Wang, Semyung & Cho, Sungman, 2015. "Development of Energy Efficiency Design Map based on acoustic resonance frequency of suction muffler in compressor," Applied Energy, Elsevier, vol. 150(C), pages 233-244.
    7. Uusitalo, Antti & Turunen-Saaresti, Teemu & Honkatukia, Juha & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2020. "Numerical analysis of working fluids for large scale centrifugal compressor driven cascade heat pumps upgrading waste heat," Applied Energy, Elsevier, vol. 269(C).
    8. Meroni, Andrea & Zühlsdorf, Benjamin & Elmegaard, Brian & Haglind, Fredrik, 2018. "Design of centrifugal compressors for heat pump systems," Applied Energy, Elsevier, vol. 232(C), pages 139-156.
    9. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    10. Najjaran, Ahmad & Freeman, James & Ramos, Alba & Markides, Christos N., 2019. "Experimental investigation of an ammonia-water-hydrogen diffusion absorption refrigerator," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyle Grimaldi & Ahmad Najjaran & Zhiwei Ma & Huashan Bao & Tony Roskilly, 2023. "Dynamic Modelling and Experimental Validation of a Pneumatic Radial Piston Motor," Energies, MDPI, vol. 16(4), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Sun & Yinwu Wang & Yu Qin & Guoshun Wang & Ran Liu & Yongping Yang, 2023. "A Review of Super-High-Temperature Heat Pumps over 100 °C," Energies, MDPI, vol. 16(12), pages 1-18, June.
    2. Jakub Szymiczek & Krzysztof Szczotka & Marian Banaś & Przemysław Jura, 2022. "Efficiency of a Compressor Heat Pump System in Different Cycle Designs: A Simulation Study for Low-Enthalpy Geothermal Resources," Energies, MDPI, vol. 15(15), pages 1-19, July.
    3. Fu, Jianqin & Wang, Huailin & Sun, Xilei & Bao, Huanhuan & Wang, Xun & Liu, Jingping, 2024. "Multi-objective optimization for impeller structure parameters of fuel cell air compressor using linear-based boosting model and reference vector guided evolutionary algorithm," Applied Energy, Elsevier, vol. 363(C).
    4. Vittorini, Diego & Cipollone, Roberto, 2016. "Energy saving potential in existing industrial compressors," Energy, Elsevier, vol. 102(C), pages 502-515.
    5. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    6. Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
    7. Chen, Weixiong & Qian, Yiran & Tang, Xin & Fang, Huawei & Yi, Jingwei & Liang, Tiebo & Zhao, Quanbin & Yan, Junjie, 2023. "System-component combined design and comprehensive evaluation of closed-air Brayton cycle," Energy, Elsevier, vol. 278(C).
    8. Łukasz Witanowski, 2024. "Multi-Objective Optimization of a Small-Scale ORC-VCC System Using Low-GWP Refrigerants," Energies, MDPI, vol. 17(21), pages 1-18, October.
    9. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    10. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    11. Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W., 2018. "Analysis on innovative resorption cycle for power and refrigeration cogeneration," Applied Energy, Elsevier, vol. 218(C), pages 10-21.
    12. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Guo, Liang & Yu, Changyou & Sun, Wanchen & Zhang, Hao & Cheng, Peng & Yan, Yuying & Lin, Shaodian & Zeng, Wenpeng & Zhu, Genan & Jiang, Mengqi, 2024. "Study on effects of ethylene or acetylene addition on the stability of ammonia laminar diffusion flame by optical diagnostics and chemical kinetics," Applied Energy, Elsevier, vol. 362(C).
    14. Tian, Xinghua & Xu, Li & Peng, Qingguo & Wu, Yifeng & Wang, Hao & Yan, Feng & Zhang, Long & Teng, Peng & Fu, Shuai, 2024. "Experimental and numerical investigation on energy efficiency improvement of methane/propane added of hydrogen-fueled micro power generation," Energy, Elsevier, vol. 302(C).
    15. Manente, Giovanni & Ding, Yulong & Sciacovelli, Adriano, 2021. "Organic Rankine cycles combined with thermochemical sorption heat transformers to enhance the power output from waste heat," Applied Energy, Elsevier, vol. 304(C).
    16. Yao, Lichao & Zou, Zhengping, 2020. "A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design," Applied Energy, Elsevier, vol. 276(C).
    17. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Laveet Kumar & Md. Shouquat Hossain & Mamdouh El Haj Assad & Mansoor Urf Manoo, 2022. "Technological Advancements and Challenges of Geothermal Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(23), pages 1-18, November.
    19. Bizon, Nicu, 2014. "Tracking the maximum efficiency point for the FC system based on extremum seeking scheme to control the air flow," Applied Energy, Elsevier, vol. 129(C), pages 147-157.
    20. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:489-:d:1022642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.