IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p481-d1022431.html
   My bibliography  Save this article

Application of Intelligent and Digital Technologies to the Tasks of Wind Energy

Author

Listed:
  • Vladislav N. Kovalnogov

    (Laboratory of Interdisciplinary Problems in Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Ruslan V. Fedorov

    (Laboratory of Interdisciplinary Problems in Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Andrei V. Chukalin

    (Laboratory of Interdisciplinary Problems in Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Mariya I. Kornilova

    (Laboratory of Interdisciplinary Problems in Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Tamara V. Karpukhina

    (Laboratory of Interdisciplinary Problems in Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Anton V. Petrov

    (Laboratory of Interdisciplinary Problems in Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

Abstract

The article considers the relevance and issues of wind turbine modeling, the principles of wind energy conversion (WEC) system operation, working areas and regulation. The influence of soft computing technologies on the different aspects of wind power systems, particularly in the fields of operation and maintenance, is considered. This article discusses the recent research, development and trends in soft computing techniques for wind-energy-conversion systems. For reliable analysis, the interaction of the wind-generator operation with the atmospheric boundary layer is considered. The authors give a detailed description of the approaches for the study and numerical modeling of the atmospheric boundary layer (ABL) in the vicinity of a wind farm. The study of the atmospheric boundary layer in the vicinity of the Ulyanovsk wind farm on the basis of cluster analysis of meteorological data is performed. Ten localizations of ABL homogeneous properties are identified. The subject of the study is the application of the results of cluster analysis to set linguistic variables in fuzzy inference algorithms as well as to adjust the initial conditions in the digital model of a wind generator. The results of cluster analysis made it possible to reasonably construct membership functions for the wind speed value in the fuzzy control algorithm to limit the output power of wind turbines. A simulation of the operation of a three-bladed horizontal type wind turbine for the conditions of one of the resulting clusters is performed, and the main regularities of the flow around the wind turbine are revealed. The results obtained are a valuable source for assessing the mutual influence of wind farms and the environment as well as wind farm site development.

Suggested Citation

  • Vladislav N. Kovalnogov & Ruslan V. Fedorov & Andrei V. Chukalin & Mariya I. Kornilova & Tamara V. Karpukhina & Anton V. Petrov, 2023. "Application of Intelligent and Digital Technologies to the Tasks of Wind Energy," Energies, MDPI, vol. 16(1), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:481-:d:1022431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/481/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/481/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Andrei V. Chukalin & Ekaterina V. Tsvetova & Mariya I. Kornilova, 2022. "Modeling and Investigation of the Effect of a Wind Turbine on the Atmospheric Boundary Layer," Energies, MDPI, vol. 15(21), pages 1-17, November.
    2. Amirsoheil Honarbari & Sajad Najafi-Shad & Mohsen Saffari Pour & Seyed Soheil Mousavi Ajarostaghi & Ali Hassannia, 2021. "MPPT Improvement for PMSG-Based Wind Turbines Using Extended Kalman Filter and Fuzzy Control System," Energies, MDPI, vol. 14(22), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reza Norouztabar & Seyed Soheil Mousavi Ajarostaghi & Seyed Sina Mousavi & Payam Nejat & Seyed Saeid Rahimian Koloor & Mohamed Eldessouki, 2022. "On the Performance of a Modified Triple Stack Blade Savonius Wind Turbine as a Function of Geometrical Parameters," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    2. Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
    3. Ersan Kabalci & Aydin Boyar, 2022. "Highly Efficient Interleaved Solar Converter Controlled with Extended Kalman Filter MPPT," Energies, MDPI, vol. 15(21), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:481-:d:1022431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.