IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6508-d1236530.html
   My bibliography  Save this article

Cu@PtRu Core–Shell Nanostructured Electrocatalysts Anchored on Reduced Graphene Oxide toward Methanol Oxidation

Author

Listed:
  • Walber dos Santos Gomes

    (Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil)

  • Rodrigo della Noce

    (Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil)

  • Tamires de Sousa de Matos

    (Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil)

  • Flávio Vargas Andrade

    (Faculdade de Ciências Exatas e Tecnológica, Universidade Federal do Pará, Abaetetuba 68440-000, Brazil)

  • Fábio Alberto Molfetta

    (Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil)

  • José Pio Iúdice de Souza

    (Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil)

Abstract

This work reports the influence of a reduced graphene oxide (rGO) support on the catalytic performance of Cu@PtRu/rGO electrocatalysts toward methanol oxidation in an acidic medium. These electrocatalysts are synthesized via a two-step reduction method; the first step utilizes ethylene glycol for the reduction of Cu 2+ ions, forming Cu/rGO. In the second step, spontaneous redox reactions take place, in a process known as galvanic displacement, where the Pt 2+ and Ru 3+ species are reduced to form PtRu layers, and the copper is partially oxidized to the solution. Then, the Cu@PtRu/rGO core–shell is produced, comprising Cu in the inner structure (core) and PtRu on the outer part (shell). To compare the catalytic performance of the prepared nanocatalysts (NCs), Pt/C, PtRu/C, and Cu@PtRu/C are also synthesized on Vulcan XC-72R carbon. All catalysts are characterized via X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Cyclic voltammetry (CV) and chronoamperometry (CA) are employed to measure the electrochemical performance. The core–shell/rGO combination is superior in catalytic activity to the traditional Pt/C, PtRu/C, and Cu@PtRu/C catalysts for the methanol oxidation reaction. These results suggest that Cu@PtRu/rGO exhibits a high bulk activity for methanol electrooxidation, a high stability, and a high tolerance to CO poisoning, meaning it is possible to reduce the platinum loading in proton-exchange membrane fuel cells (PEMFCs).

Suggested Citation

  • Walber dos Santos Gomes & Rodrigo della Noce & Tamires de Sousa de Matos & Flávio Vargas Andrade & Fábio Alberto Molfetta & José Pio Iúdice de Souza, 2023. "Cu@PtRu Core–Shell Nanostructured Electrocatalysts Anchored on Reduced Graphene Oxide toward Methanol Oxidation," Energies, MDPI, vol. 16(18), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6508-:d:1236530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelkareem, Mohammad Ali & Sayed, Enas Taha & Nakagawa, Nobuyoshi, 2020. "Significance of diffusion layers on the performance of liquid and vapor feed passive direct methanol fuel cells," Energy, Elsevier, vol. 209(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Shuo & Song, Nan & Liu, Yuntao & Zhao, Chunhui & Wang, Ying, 2024. "Comprehensive energy conversion efficiency analysis of micro direct methanol fuel cell stack based on polarization theory," Energy, Elsevier, vol. 287(C).
    2. Halima Alnaqbi & Oussama El-Kadri & Mohammad Ali Abdelkareem & Sameer Al-Asheh, 2022. "Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells," Energies, MDPI, vol. 15(21), pages 1-25, November.
    3. Ke, Yuzhi & Zhang, Baotong & Bai, Yafeng & Yuan, Wei & Li, Jinguang & Liu, Ziang & Su, Xiaoqing & Zhang, Shiwei & Ding, Xinrui & Wan, Zhenping & Tang, Yong & Zhou, Feikun, 2023. "Bubble-derived contour regeneration of flow channel by in situ tracking for direct methanol fuel cells," Energy, Elsevier, vol. 264(C).
    4. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Abdul Ghani Olabi & Enas Taha Sayed, 2023. "Developments in Hydrogen Fuel Cells," Energies, MDPI, vol. 16(5), pages 1-5, March.
    6. Zhang, Rongji & Cao, Jiamu & Wang, Weiqi & Zhou, Jing & Chen, Junyu & Chen, Liang & Chen, Weiping & Zhang, Yufeng, 2023. "An improved strategy of passive micro direct methanol fuel cell: Mass transport mechanism optimization dominated by a single hydrophilic layer," Energy, Elsevier, vol. 274(C).
    7. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    8. Enas Taha Sayed & Hussain Alawadhi & Khaled Elsaid & A. G. Olabi & Maryam Adel Almakrani & Shaikha Tamim Bin Tamim & Ghada H. M. Alafranji & Mohammad Ali Abdelkareem, 2020. "A Carbon-Cloth Anode Electroplated with Iron Nanostructure for Microbial Fuel Cell Operated with Real Wastewater," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    9. A.G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Khaled Elsaid & Mohammad Ali Abdelkareem, 2020. "Prospects of Fuel Cell Combined Heat and Power Systems," Energies, MDPI, vol. 13(16), pages 1-20, August.
    10. Olabi, A.G. & Wilberforce, Tabbi & Sayed, Enas Taha & Abo-Khalil, Ahmed G. & Maghrabie, Hussein M. & Elsaid, Khaled & Abdelkareem, Mohammad Ali, 2022. "Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission," Energy, Elsevier, vol. 254(PA).
    11. Oliver O. Apeh & Edson L. Meyer & Ochuko K. Overen, 2022. "Contributions of Solar Photovoltaic Systems to Environmental and Socioeconomic Aspects of National Development—A Review," Energies, MDPI, vol. 15(16), pages 1-28, August.
    12. Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Bahaa, Ahmed & Eisa, Tasnim & Alawadhi, Hussain & Al-Asheh, Sameer & Chae, Kyu-Jung & Olabi, A.G., 2021. "Synthesis and performance evaluation of various metal chalcogenides as active anodes for direct urea fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Rezk, Hegazy & Ferahtia, Seydali & Djeroui, Ali & Chouder, Aissa & Houari, Azeddine & Machmoum, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer," Energy, Elsevier, vol. 239(PC).
    14. Wilberforce, Tabbi & Olabi, A.G. & Pritchard, Daniel & Abdelkareem, Mohammad Ali & Sayed, Enas Taha, 2023. "Development of proton exchange membrane fuel cell flow plate geometry design," Energy, Elsevier, vol. 283(C).
    15. Maria H. de Sá & Alexandra M. F. R. Pinto & Vânia B. Oliveira, 2022. "Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018," Energies, MDPI, vol. 15(10), pages 1-48, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6508-:d:1236530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.