IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6506-d1236486.html
   My bibliography  Save this article

Performance Simulation Model of a Radiation-Enhanced Thermal Diode Tank-Assisted Refrigeration and Air-Conditioning (RTDT-RAC) System: A Novel Cooling System

Author

Listed:
  • Mingzhen Wang

    (School Electrical of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia)

  • Eric Hu

    (School Electrical of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia)

  • Lei Chen

    (School Electrical of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia)

Abstract

This paper presents a novel technology to improve the energy efficiency of refrigeration and air-conditioning (RAC) systems by applying a condenser cooling approach. The approach is based on the integration of an innovative radiation-enhanced thermal diode tank (RTDT) with a RAC system. The thermal diode tank (TDT), consisting of heat pipes and an insulated water tank, is a passive device to generate cooling water at a minimum night ambient temperature. When the radiation-enhanced heat pipe (RHP) is equipped with the TDT, it becomes an RTDT, which could theoretically lower the water temperature below the ambient temperature. In this study, a radiation-enhanced thermal diode tank (RTDT) is proposed to supply cooling water to the RAC system. Simulation models for the proposed RTDT-assisted RAC (RTDT-RAC) system are developed in order to investigate the impacts of the tank size to cooling capacity (TS/Q c ) ratio, day/night ambient temperature fluctuations on the system’s coefficient of performance (COP) and the energy saving percentage (ESP). The results show that a greater day/night ambient temperature difference and a larger TS/Q c value can both enhance the COP and ESP of the RTDT-RAC system. The optimal and threshold TS/Q c values were 1 m 3 /kW and 0.18 m 3 /kW, respectively. These findings demonstrate the potential of the RTDT-RAC system to achieve significant energy savings and provide valuable insights for the design and optimization of an RTDT-RAC system.

Suggested Citation

  • Mingzhen Wang & Eric Hu & Lei Chen, 2023. "Performance Simulation Model of a Radiation-Enhanced Thermal Diode Tank-Assisted Refrigeration and Air-Conditioning (RTDT-RAC) System: A Novel Cooling System," Energies, MDPI, vol. 16(18), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6506-:d:1236486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anis Akrouch, Ghassan & Sánchez, Marcelo & Briaud, Jean-Louis, 2020. "Thermal performance and economic study of an energy piles system under cooling dominated conditions," Renewable Energy, Elsevier, vol. 147(P2), pages 2736-2747.
    2. López-Zavala, R. & Velázquez-Limón, N. & Ojeda-Benítez, S. & Nakasima-López, M. & Lara, F. & Aguilar-Jiménez, J.A. & Santillán-Soto, N. & Islas, S., 2023. "Novel desalination system that uses product water to generate cooling through a barometric ejector-condenser," Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingzhen Wang & Eric Hu & Lei Chen, 2024. "TRNSYS Simulation of a Bi-Functional Solar-Thermal-Energy-Storage-Assisted Heat Pump System," Energies, MDPI, vol. 17(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Ping & Jia, Linrui & Zhou, Xinlei & Yang, Wenxiao & Zhang, Wenke, 2020. "Heat transfer analysis of energy piles with parallel U-Tubes," Renewable Energy, Elsevier, vol. 161(C), pages 1046-1058.
    2. Ma, Qijie & Wang, Peijun & Fan, Jianhua & Klar, Assaf, 2022. "Underground solar energy storage via energy piles: An experimental study," Applied Energy, Elsevier, vol. 306(PB).
    3. Ma, Qijie & Fan, Jianhua & Liu, Hantao, 2023. "Energy pile-based ground source heat pump system with seasonal solar energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 1132-1146.
    4. Heidari, Bahareh & Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan, 2022. "Energy piles under lateral loading: Analytical and numerical investigations," Renewable Energy, Elsevier, vol. 182(C), pages 172-191.
    5. Ayaz, Hassam & Faizal, Mohammed & Bouazza, Abdelmalek, 2024. "Energy, economic, and carbon emission analysis of a residential building with an energy pile system," Renewable Energy, Elsevier, vol. 220(C).
    6. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "Residential Buildings’ Foundations as a Ground Heat Exchanger and Comparison among Different Types in a Moderate Climate Country," Energies, MDPI, vol. 13(23), pages 1-22, November.
    7. ten Bosch, Sofie & Ravera, Elena & Laloui, Lyesse, 2024. "Performance of energy piles foundation in hot-dominated climate: A case study in Dubai," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6506-:d:1236486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.