IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6406-d1232804.html
   My bibliography  Save this article

Economic Analysis of a Photovoltaic Hydrogen Refueling Station Based on Hydrogen Load

Author

Listed:
  • Lifei Song

    (Innovation and Entrepreneurship Engineering Training Center, Shanghai University of Electric Power, Shanghai 201306, China
    Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

  • Weijun Gao

    (Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

  • Liting Zhang

    (College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Qifen Li

    (College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Hongbo Ren

    (College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

Abstract

With the goal of achieving “carbon peak in 2030 and carbon neutrality in 2060”, as clearly proposed by China, the transportation sector will face long–term pressure on carbon emissions, and the application of hydrogen fuel cell vehicles will usher in a rapid growth period. However, true “zero carbon” emissions cannot be separated from “green hydrogen”. Therefore, it is of practical significance to explore the feasibility of renewable energy hydrogen production in the context of hydrogen refueling stations, especially photovoltaic hydrogen production, which is applied to hydrogen refueling stations (hereinafter referred to “photovoltaic hydrogen refueling stations”). This paper takes a hydrogen refueling station in Shanghai with a supply capacity of 500 kg/day as the research object. Based on a characteristic analysis of the hydrogen demand of the hydrogen refueling station throughout the day, this paper studies and analyzes the system configuration, operation strategy, environmental effects, and economics of the photovoltaic hydrogen refueling station. It is estimated that when the hydrogen price is no less than 6.23 USD, the photovoltaic hydrogen refueling station has good economic benefits. Additionally, compared with the conventional hydrogen refueling station, it can reduce carbon emissions by approximately 1237.28 tons per year, with good environmental benefits.

Suggested Citation

  • Lifei Song & Weijun Gao & Liting Zhang & Qifen Li & Hongbo Ren, 2023. "Economic Analysis of a Photovoltaic Hydrogen Refueling Station Based on Hydrogen Load," Energies, MDPI, vol. 16(17), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6406-:d:1232804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6406/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6406/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Pereira & Vitor Monteiro & Joao L. Afonso & Joni Teixeira, 2024. "Hydrogen Refueling Stations: A Review of the Technology Involved from Key Energy Consumption Processes to Related Energy Management Strategies," Energies, MDPI, vol. 17(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Xiaoyun & Guo, Kun & Zhang, Dayong & Ji, Qiang, 2024. "On the interactive effects of climate policies: Insights from a stock-flow consistent model," Applied Energy, Elsevier, vol. 358(C).
    2. Joo, Chonghyo & Lee, Jaewon & Kim, Yurim & Cho, Hyungtae & Gu, Boram & Kim, Junghwan, 2024. "A novel on-site SMR process integrated with a hollow fiber membrane module for efficient blue hydrogen production: Modeling, validation, and techno-economic analysis," Applied Energy, Elsevier, vol. 354(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6406-:d:1232804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.