IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6111-d1222286.html
   My bibliography  Save this article

A Review of Methodologies for Managing Energy Flexibility Resources in Buildings

Author

Listed:
  • Omid Pedram

    (Department of Electrical and Computer Engineering, University of Coimbra, 3030-290 Coimbra, Portugal)

  • Ehsan Asadi

    (Associação para o Desenvolvimento da Aerodinâmica Industrial—ADAI, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pólo II, 3030-788 Coimbra, Portugal)

  • Behrang Chenari

    (Associação para o Desenvolvimento da Aerodinâmica Industrial—ADAI, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pólo II, 3030-788 Coimbra, Portugal)

  • Pedro Moura

    (Department of Electrical and Computer Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
    Institute of Systems and Robotics, University of Coimbra, 3030-290 Coimbra, Portugal)

  • Manuel Gameiro da Silva

    (Associação para o Desenvolvimento da Aerodinâmica Industrial—ADAI, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pólo II, 3030-788 Coimbra, Portugal)

Abstract

The integration of renewable energy and flexible energy sources in buildings brings numerous benefits. However, the integration of new technologies has increased the complexity and despite the progress of optimization algorithms and technologies, new research challenges emerge. With the increasing availability of data and advanced modeling tools, stakeholders in the building sector are actively seeking a more comprehensive understanding of the implementation and potential benefits of energy optimization and an extensive up-to-date survey of optimization in the context of buildings and communities is missing in the literature. This study comprehensively reviews over 180 relevant publications on the management and optimization of energy flexibility resources in buildings. The primary objective was to examine and analyze prior research, with emphasis on the used methods, objectives, and scope. The method of content analysis was used to ensure a thorough examination of the existing literature on the subject. It was concluded that multi-objective optimization is crucial to enhance the utilization of flexible resources within individual buildings and communities. Moreover, the study successfully pinpointed key challenges and opportunities for future research, such as the need for accurate data, the complexity of the optimization process, and the potential trade-offs between different objectives.

Suggested Citation

  • Omid Pedram & Ehsan Asadi & Behrang Chenari & Pedro Moura & Manuel Gameiro da Silva, 2023. "A Review of Methodologies for Managing Energy Flexibility Resources in Buildings," Energies, MDPI, vol. 16(17), pages 1-30, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6111-:d:1222286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Huangxin & Shi, Yi & Zhao, Xin, 2022. "Investment in renewable energy resources, sustainable financial inclusion and energy efficiency: A case of US economy," Resources Policy, Elsevier, vol. 77(C).
    2. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    3. Yinan Li & Neng Zhu & Beibei Qin, 2019. "What Affects the Progress and Transformation of New Residential Building Energy Efficiency Promotion in China: Stakeholders’ Perceptions," Energies, MDPI, vol. 12(6), pages 1-41, March.
    4. Ekata Kaushik & Vivek Prakash & Om Prakash Mahela & Baseem Khan & Adel El-Shahat & Almoataz Y. Abdelaziz, 2022. "Comprehensive Overview of Power System Flexibility during the Scenario of High Penetration of Renewable Energy in Utility Grid," Energies, MDPI, vol. 15(2), pages 1-29, January.
    5. Koskela, Juha & Rautiainen, Antti & Järventausta, Pertti, 2019. "Using electrical energy storage in residential buildings – Sizing of battery and photovoltaic panels based on electricity cost optimization," Applied Energy, Elsevier, vol. 239(C), pages 1175-1189.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    2. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    3. Mara Madaleno & Manuel Carlos Nogueira, 2023. "How Renewable Energy and CO 2 Emissions Contribute to Economic Growth, and Sustainability—An Extensive Analysis," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    4. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    5. Fremstad, Anders & Paul, Mark, 2022. "Neoliberalism and climate change: How the free-market myth has prevented climate action," Ecological Economics, Elsevier, vol. 197(C).
    6. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    7. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    8. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    9. Kukkikatte Ramamurthy Rao, Harshadeep & Gemechu, Eskinder & Thakur, Ujwal & Shankar, Karthik & Kumar, Amit, 2021. "Techno-economic assessment of titanium dioxide nanorod-based perovskite solar cells: From lab-scale to large-scale manufacturing," Applied Energy, Elsevier, vol. 298(C).
    10. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    11. Kalyani Makarand Kurundkar & Geetanjali Abhijit Vaidya, 2023. "Stochastic Security-Constrained Economic Dispatch of Load-Following and Contingency Reserves Ancillary Service Using a Grid-Connected Microgrid during Uncertainty," Energies, MDPI, vol. 16(6), pages 1-25, March.
    12. Germán Arana-Landín & Naiara Uriarte-Gallastegi & Beñat Landeta-Manzano & Iker Laskurain-Iturbe, 2023. "The Contribution of Lean Management—Industry 4.0 Technologies to Improving Energy Efficiency," Energies, MDPI, vol. 16(5), pages 1-19, February.
    13. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    14. Richard P. van Leeuwen & Annelies E. Boerman & Edmund W. Schaefer & Gerwin Hoogsteen & Yashar S. Hajimolana, 2022. "Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs," Energies, MDPI, vol. 15(6), pages 1-22, March.
    15. Zheng, Chengting & Wu, Shufang & Teng, Yin-Pei & Wu, Shuzhao & Wang, Zhe, 2023. "Natural resources, tourism resources and economic growth: A new direction to natural resources perspective and investment," Resources Policy, Elsevier, vol. 86(PB).
    16. Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
    17. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    18. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    19. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    20. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6111-:d:1222286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.