IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5784-d1209901.html
   My bibliography  Save this article

Experimental Investigation of the Frequency Response of an LC-Filter and Power Transformer for Grid Connection

Author

Listed:
  • Christoffer Fjellstedt

    (Division of Electricity, Department of Electrical Engineering, Uppsala University, 752 37 Uppsala, Sweden)

  • Johan Forslund

    (Division of Electricity, Department of Electrical Engineering, Uppsala University, 752 37 Uppsala, Sweden)

  • Karin Thomas

    (Division of Electricity, Department of Electrical Engineering, Uppsala University, 752 37 Uppsala, Sweden)

Abstract

The power delivered by a voltage source inverter needs to be filtered to fulfill grid code requirements. A commonly used filter technology is the LCL-filter. An issue with the LCL-filter is the occurrence of a resonance peak, which can be mitigated with active or passive damping methods. The transfer function of the filter is often used to investigate the frequency response of the system and propose damping methods. The use of an LC-filter combined with a power transformer to form an LCL-filter has not been extensively investigated. Therefore, the study in this article introduces a model for an LC-filter and power transformer for the grid connection and a derived transfer function for the model. The transfer function for the system is validated with simulations and experimental investigations. The results from simulations and the results from a direct solution of the derived analytical function overlap almost perfectly. The magnitudes of the experimental results are approximately 1 dB lower than the simulation and analytical results before the resonance frequency. At the resonance frequency, the experimental results are approximately 13.4 dB lower. The resonance frequency, however, occurs at approximately the same frequency. It is also concluded that the system is significantly damped.

Suggested Citation

  • Christoffer Fjellstedt & Johan Forslund & Karin Thomas, 2023. "Experimental Investigation of the Frequency Response of an LC-Filter and Power Transformer for Grid Connection," Energies, MDPI, vol. 16(15), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5784-:d:1209901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5784/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5784/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Büyük, Mehmet & Tan, Adnan & Tümay, Mehmet & Bayındır, K. Çağatay, 2016. "Topologies, generalized designs, passive and active damping methods of switching ripple filters for voltage source inverter: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 46-69.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chatterjee, Shantanu & Kumar, Prashant & Chatterjee, Saibal, 2018. "A techno-commercial review on grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2371-2397.
    2. Moshammed Nishat Tasnim & Tofael Ahmed & Monjila Afrin Dorothi & Shameem Ahmad & G. M. Shafiullah & S. M. Ferdous & Saad Mekhilef, 2023. "Voltage-Oriented Control-Based Three-Phase, Three-Leg Bidirectional AC–DC Converter with Improved Power Quality for Microgrids," Energies, MDPI, vol. 16(17), pages 1-32, August.
    3. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Jason David & Philip Ciufo & Sean Elphick & Duane Robinson, 2022. "Preliminary Evaluation of the Impact of Sustained Overvoltage on Low Voltage Electronics-Based Equipment," Energies, MDPI, vol. 15(4), pages 1-16, February.
    5. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).
    6. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    7. Gomes, Camilo C. & Cupertino, Allan F. & Pereira, Heverton A., 2018. "Damping techniques for grid-connected voltage source converters based on LCL filter: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 116-135.
    8. Qiyu Li & Hongwei Zhou & Jiansong Zhang & Shengdun Zhao & Jingfeng Lu, 2020. "A Virtual Negative Resistor Based Common Mode Current Resonance Suppression Method for Three-Level Grid-Tied Inverter with Discontinuous PWM," Energies, MDPI, vol. 13(7), pages 1-16, April.
    9. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    10. Soumya Ranjan Das & Prakash Kumar Ray & Arun Kumar Sahoo & Somula Ramasubbareddy & Thanikanti Sudhakar Babu & Nallapaneni Manoj Kumar & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2021. "A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement," Energies, MDPI, vol. 14(15), pages 1-32, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5784-:d:1209901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.