IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1595-d339806.html
   My bibliography  Save this article

A Virtual Negative Resistor Based Common Mode Current Resonance Suppression Method for Three-Level Grid-Tied Inverter with Discontinuous PWM

Author

Listed:
  • Qiyu Li

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    TBEA Xi’an Electric Technology Co., Ltd., Xi’an 710119, China)

  • Hongwei Zhou

    (TBEA Xi’an Electric Technology Co., Ltd., Xi’an 710119, China
    School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Jiansong Zhang

    (School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Shengdun Zhao

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Jingfeng Lu

    (TBEA Xi’an Electric Technology Co., Ltd., Xi’an 710119, China)

Abstract

The output LC filter of a photovoltaic (PV) string three-level grid-tied inverter that connects the filter capacitor neutral point to dc-link capacitor neutral point can reduce the common-mode (CM) current injected to the grid by letting the CM current circulate within the inverter. However, the internal CM current may resonate because of the existence of the resonant frequency of the internal CM LC circuit. Compared with the traditional continuous pulse-width modulation (CPWM), the resonance can be worse if discontinuous pulse-width modulation (DPWM) is applied, for the zero sequence quantity of DPWM contains more harmonics than that of CPWM. In this paper, a virtual negative resistor based common mode current resonance suppression method for a three-level grid-tied inverter is proposed to overcome the CM current resonance problem in DPWM application. Different positions of the virtual negative resistor in the equivalent CM circuit with different feedback variables are analyzed theoretically. The virtual negative resistor connected in series with the inductor in the equivalent CM circuit is selected to damp the CM current resonance for simplification and damping performance. Different from the implementation in CPWM where a pair of small voltage vectors exist and are used to adjust the CM voltage directly, the proposed method for DPWM application is implemented indirectly by adding the CM adjustment quantity to differential-mode (DM) control quantity with appropriate coefficients. Depending on the sector of DM control quantity in the α β reference frame, the coefficients are calculated using one of three specific voltage vectors. Experimental results are given to demonstrate the effectiveness of theoretical analyses and the proposed method.

Suggested Citation

  • Qiyu Li & Hongwei Zhou & Jiansong Zhang & Shengdun Zhao & Jingfeng Lu, 2020. "A Virtual Negative Resistor Based Common Mode Current Resonance Suppression Method for Three-Level Grid-Tied Inverter with Discontinuous PWM," Energies, MDPI, vol. 13(7), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1595-:d:339806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Büyük, Mehmet & Tan, Adnan & Tümay, Mehmet & Bayındır, K. Çağatay, 2016. "Topologies, generalized designs, passive and active damping methods of switching ripple filters for voltage source inverter: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 46-69.
    2. Hassaine, L. & OLias, E. & Quintero, J. & Salas, V., 2014. "Overview of power inverter topologies and control structures for grid connected photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 796-807.
    3. Gomes, Camilo C. & Cupertino, Allan F. & Pereira, Heverton A., 2018. "Damping techniques for grid-connected voltage source converters based on LCL filter: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 116-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    2. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    3. Trujillo, C.L. & Santamaría, F. & Gaona, E.E., 2016. "Modeling and testing of two-stage grid-connected photovoltaic micro-inverters," Renewable Energy, Elsevier, vol. 99(C), pages 533-542.
    4. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    5. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    6. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    7. Chatterjee, Shantanu & Kumar, Prashant & Chatterjee, Saibal, 2018. "A techno-commercial review on grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2371-2397.
    8. Moshammed Nishat Tasnim & Tofael Ahmed & Monjila Afrin Dorothi & Shameem Ahmad & G. M. Shafiullah & S. M. Ferdous & Saad Mekhilef, 2023. "Voltage-Oriented Control-Based Three-Phase, Three-Leg Bidirectional AC–DC Converter with Improved Power Quality for Microgrids," Energies, MDPI, vol. 16(17), pages 1-32, August.
    9. Chettibi, N. & Mellit, A., 2018. "Intelligent control strategy for a grid connected PV/SOFC/BESS energy generation system," Energy, Elsevier, vol. 147(C), pages 239-262.
    10. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Elutunji Buraimoh & Innocent E. Davidson & Fernando Martinez-Rodrigo, 2019. "Fault Ride-Through Enhancement of Grid Supporting Inverter-Based Microgrid Using Delayed Signal Cancellation Algorithm Secondary Control," Energies, MDPI, vol. 12(20), pages 1-26, October.
    12. Zafar, Tasneem & Zafar, Kirn & Zafar, Junaid & P Gibson, Andrew A., 2016. "Integration of 750MW renewable solar power to national grid of Pakistan – An economic and technical perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1209-1219.
    13. Jason David & Philip Ciufo & Sean Elphick & Duane Robinson, 2022. "Preliminary Evaluation of the Impact of Sustained Overvoltage on Low Voltage Electronics-Based Equipment," Energies, MDPI, vol. 15(4), pages 1-16, February.
    14. Miveh, Mohammad Reza & Rahmat, Mohd Fadli & Ghadimi, Ali Asghar & Mustafa, Mohd Wazir, 2016. "Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1592-1610.
    15. Haque, M. Mejbaul & Wolfs, Peter, 2016. "A review of high PV penetrations in LV distribution networks: Present status, impacts and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1195-1208.
    16. Sridhar, V. & Umashankar, S., 2017. "A comprehensive review on CHB MLI based PV inverter and feasibility study of CHB MLI based PV-STATCOM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 138-156.
    17. Nurul Fazlin Roslan & Alvaro Luna & Joan Rocabert & Jose Ignacio Candela & Pedro Rodriguez, 2018. "Remote Power Control Injection of Grid-Connected Power Converters Based on Virtual Flux," Energies, MDPI, vol. 11(3), pages 1-22, February.
    18. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).
    19. João Faria & João Fermeiro & José Pombo & Maria Calado & Sílvio Mariano, 2020. "Proportional Resonant Current Control and Output-Filter Design Optimization for Grid-Tied Inverters Using Grey Wolf Optimizer," Energies, MDPI, vol. 13(8), pages 1-18, April.
    20. Salas, V. & Suponthana, W. & Salas, R.A., 2015. "Overview of the off-grid photovoltaic diesel batteries systems with AC loads," Applied Energy, Elsevier, vol. 157(C), pages 195-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1595-:d:339806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.