IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5730-d1207682.html
   My bibliography  Save this article

Performance, Emissions, and Combustion Characteristics of a Hydrogen-Fueled Spark-Ignited Engine at Different Compression Ratios: Experimental and Numerical Investigation

Author

Listed:
  • Ducduy Nguyen

    (Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia)

  • Tanmay Kar

    (Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
    Hydrogen Technology Center, GTI Energy, 1700 S Mount Prospect Rd, Des Plaines, IL 60018, USA)

  • James W. G. Turner

    (Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia)

Abstract

This paper investigates the performance of hydrogen-fueled, spark-ignited, single-cylinder Cooperative Fuel Research using experimental and numerical approaches. This study examines the effect of the air–fuel ratio on engine performance, emissions, and knock behaviour across different compression ratios. The results indicate that λ significantly affects both engine performance and emissions, with a λ value of 2 yielding the highest efficiency and lowest emissions for all the tested compression ratios. Combustion analysis reveals normal combustion at λ ≥ 2, while knocking combustion occurs at λ < 2, irrespective of the tested compression ratios. The Livenwood–Wu integral approach was evaluated to assess the likelihood of end-gas autoignition based on fuel reactivity, demonstrating that both normal and knocking combustion possibilities are consistent with experimental investigations. Combustion analysis at the ignition timing for maximum brake torque conditions demonstrates knock-free stable combustion up to λ = 3, with increased end-gas autoignition at lower λ values. To achieve knock-free combustion at those low λs, the spark timings are significantly retarded to after top dead center crank angle position. Engine-out NOx emissions consistently increase in trend with a decrease in the air–fuel ratio of up to λ = 3, after which a distinct variation in NOx is observed with an increase in the compression ratio.

Suggested Citation

  • Ducduy Nguyen & Tanmay Kar & James W. G. Turner, 2023. "Performance, Emissions, and Combustion Characteristics of a Hydrogen-Fueled Spark-Ignited Engine at Different Compression Ratios: Experimental and Numerical Investigation," Energies, MDPI, vol. 16(15), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5730-:d:1207682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oh, Sechul & Park, Cheolwoong & Nguyen, Ducduy & Kim, Seonyeob & Kim, Yongrae & Choi, Young & Lee, Jeongwoo, 2021. "Investigation on the operable range and idle condition of hydrogen-fueled spark ignition engine for unmanned aerial vehicle (UAV)," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ward Suijs & Sebastian Verhelst, 2023. "Scaling Performance Parameters of Reciprocating Engines for Sustainable Energy System Optimization Modelling," Energies, MDPI, vol. 16(22), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafari, Hamed & Safarzadeh, Soroush & Azad-Farsani, Ehsan, 2022. "Effects of governmental policies on energy-efficiency improvement of hydrogen fuel cell cars: A game-theoretic approach," Energy, Elsevier, vol. 254(PC).
    2. Zhenghao Yang & Yang Du & Qi Geng & Xu Gao & Haonan Er & Yuanfei Liu & Guangyu He, 2022. "Performance Analysis of a Hydrogen-Doped High-Efficiency Hybrid Cycle Rotary Engine in High-Altitude Environments Based on a Single-Zone Model," Energies, MDPI, vol. 15(21), pages 1-20, October.
    3. Oh, Sechul & Park, Cheolwoong & Oh, Junho & Kim, Seonyeob & Kim, Yongrae & Choi, Young & Kim, Changgi, 2022. "Combustion, emissions, and performance of natural gas–ammonia dual-fuel spark-ignited engine at full-load condition," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5730-:d:1207682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.