Attention-Focused Machine Learning Method to Provide the Stochastic Load Forecasts Needed by Electric Utilities for the Evolving Electrical Distribution System
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Majed A. Alotaibi, 2022. "Machine Learning Approach for Short-Term Load Forecasting Using Deep Neural Network," Energies, MDPI, vol. 15(17), pages 1-23, August.
- Pinheiro, Marco G. & Madeira, Sara C. & Francisco, Alexandre P., 2023. "Short-term electricity load forecasting—A systematic approach from system level to secondary substations," Applied Energy, Elsevier, vol. 332(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Smriti Sharma & John O’Donnell & Wencong Su & Richard Mueller & Line Roald & Khurram Rehman & Andrey Bernstein, 2024. "Engineering Microgrids Amid the Evolving Electrical Distribution System," Energies, MDPI, vol. 17(19), pages 1-34, September.
- John O’Donnell & Wencong Su, 2023. "A Stochastic Load Forecasting Approach to Prevent Transformer Failures and Power Quality Issues Amid the Evolving Electrical Demands Facing Utilities," Energies, MDPI, vol. 16(21), pages 1-23, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sepehr Moalem & Roya M. Ahari & Ghazanfar Shahgholian & Majid Moazzami & Seyed Mohammad Kazemi, 2022. "Long-Term Electricity Demand Forecasting in the Steel Complex Micro-Grid Electricity Supply Chain—A Coupled Approach," Energies, MDPI, vol. 15(21), pages 1-17, October.
- Atif Maqbool Khan & Artur Wyrwa, 2024. "A Survey of Quantitative Techniques in Electricity Consumption—A Global Perspective," Energies, MDPI, vol. 17(19), pages 1-38, September.
- Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
- Mustafa Saglam & Xiaojing Lv & Catalina Spataru & Omer Ali Karaman, 2024. "Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning," Energies, MDPI, vol. 17(4), pages 1-22, February.
- Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Hongmei Cui & Zhongyang Li & Bingchuan Sun & Teng Fan & Yonghao Li & Lida Luo & Yong Zhang & Jian Wang, 2022. "A New Ice Quality Prediction Method of Wind Turbine Impeller Based on the Deep Neural Network," Energies, MDPI, vol. 15(22), pages 1-18, November.
- John O’Donnell & Wencong Su, 2023. "A Stochastic Load Forecasting Approach to Prevent Transformer Failures and Power Quality Issues Amid the Evolving Electrical Demands Facing Utilities," Energies, MDPI, vol. 16(21), pages 1-23, October.
- Bianca Magalhães & Pedro Bento & José Pombo & Maria do Rosário Calado & Sílvio Mariano, 2024. "Short-Term Load Forecasting Based on Optimized Random Forest and Optimal Feature Selection," Energies, MDPI, vol. 17(8), pages 1-21, April.
- Sepideh Radhoush & Bradley M. Whitaker & Hashem Nehrir, 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks," Energies, MDPI, vol. 16(16), pages 1-29, August.
More about this item
Keywords
clustering methods; load forecasting; microgrid; neural networks; smart meters;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5661-:d:1204244. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.