IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6261-d899700.html
   My bibliography  Save this article

Machine Learning Approach for Short-Term Load Forecasting Using Deep Neural Network

Author

Listed:
  • Majed A. Alotaibi

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
    K.A.CARE Energy Research and Innovation Center at Riyadh, Riyadh 11451, Saudi Arabia
    Saudi Electricity Company Chair in Power System Reliability and Security, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract

Power system demand forecasting is a crucial task in the power system engineering field. This is due to the fact that most system planning and operation activities basically rely on proper forecasting models. Entire power infrastructures are built essentially to provide and serve the consumption of energy. Therefore, it is very necessary to construct robust and efficient predictive models in order to provide accurate load forecasting. In this paper, three techniques are utilized for short-term load forecasting. These techniques are deep neural network (DNN), multilayer perceptron-based artificial neural network (ANN), and decision tree-based prediction (DR). New predictive variables are included to enhance the overall forecasting and handle the difficulties caused by some categorical predictors. The comparison among these three techniques is executed based on coefficients of determination R 2 and mean absolute error (MAE). Statistical tests are performed in order to verify the results and examine whether these models are statistically different or not. The results reveal that the DNN model outperformed the other models and was statistically different from them.

Suggested Citation

  • Majed A. Alotaibi, 2022. "Machine Learning Approach for Short-Term Load Forecasting Using Deep Neural Network," Energies, MDPI, vol. 15(17), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6261-:d:899700
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6261/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John O’Donnell & Wencong Su, 2023. "Attention-Focused Machine Learning Method to Provide the Stochastic Load Forecasts Needed by Electric Utilities for the Evolving Electrical Distribution System," Energies, MDPI, vol. 16(15), pages 1-21, July.
    2. Sepehr Moalem & Roya M. Ahari & Ghazanfar Shahgholian & Majid Moazzami & Seyed Mohammad Kazemi, 2022. "Long-Term Electricity Demand Forecasting in the Steel Complex Micro-Grid Electricity Supply Chain—A Coupled Approach," Energies, MDPI, vol. 15(21), pages 1-17, October.
    3. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    5. Hongmei Cui & Zhongyang Li & Bingchuan Sun & Teng Fan & Yonghao Li & Lida Luo & Yong Zhang & Jian Wang, 2022. "A New Ice Quality Prediction Method of Wind Turbine Impeller Based on the Deep Neural Network," Energies, MDPI, vol. 15(22), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6261-:d:899700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.