IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5643-d1203781.html
   My bibliography  Save this article

Analysis of the Complex Three-Dimensional Flow Structure in the Circulation Pump of the Flow-Making System Based on Delayed Detached Eddy Simulation

Author

Listed:
  • Zhong Li

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Lei Ding

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Weifeng Gong

    (Shanghai Marine Equipment Research Institute (SMERI), Shanghai 200031, China)

  • Dan Ni

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Cunzhi Ma

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Yanna Sun

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

As the core component of the flow-making system, the circulating pump has differences in its internal flow structure under different operating conditions, which affects the flow quality of the environmental simulation test area and the authenticity of marine environmental simulation. To explore the internal flow characteristics and outlet evolution characteristics of the circulating pump, this paper uses the DDES (delayed detached eddy simulation) method for numerical simulation. This paper combines BVF (boundary vorticity flow) diagnosis and the limit streamline method to analyze the evolution characteristics of the unstable flow area on the blade surface; it uses the Q criterion to identify the vortex structure inside the pump and analyze its evolution and development laws. Additionally, a quantitative analysis of the flow state of the circulating pump using flow uniformity indexes is performed. The results show that the surface of impeller blades is uniform under 1.0 Q N . At 0.7 Q N , the evolution process of the blade suction surface BVF is periodic, with a corresponding period of about 2/9 T (0.02 s). At 1.0 Q N , the strength and scale of the separated vortices inside the guide vanes are minimized compared to other flow rates, and the scale and strength of the vortices show a decreasing trend along the outer normal direction. The evolution period of the separation vortex on the pressure surface of the guide vane is about 1/3 T (0.033 s) under 1.1 Q N and the evolution period of the suction surface of the guide vane is about 2/3 T (0.067 s) under 0.7 Q N . The flow uniformity indexes value downstream of the pump outlet under 1.0 Q N are very close to the ideal value; with a corresponding value of Ϛ i = 0.023, θ ¯ = 89.94°, γ = 0.95, λ = 97.9%, the outflow can be approximately regarded as axial uniform flow. The research results can provide theoretical support for the further optimization design of circulating pumps and lay the foundation for the implementation of real systems.

Suggested Citation

  • Zhong Li & Lei Ding & Weifeng Gong & Dan Ni & Cunzhi Ma & Yanna Sun, 2023. "Analysis of the Complex Three-Dimensional Flow Structure in the Circulation Pump of the Flow-Making System Based on Delayed Detached Eddy Simulation," Energies, MDPI, vol. 16(15), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5643-:d:1203781
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zilei Zuo & Linwei Tan & Weidong Shi & Cheng Chen & Jincheng Ye & Egbo Munachi Francis, 2022. "Transient Characteristic Analysis of Variable Frequency Speed Regulation of Axial Flow Pump," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    2. Wenpeng Zhang & Fangping Tang & Lijian Shi & Qiujin Hu & Ying Zhou, 2020. "Effects of an Inlet Vortex on the Performance of an Axial-Flow Pump," Energies, MDPI, vol. 13(11), pages 1-23, June.
    3. Fan Yang & Zhongbin Li & Yao Yuan & Chao Liu & Yiqi Zhang & Yan Jin, 2021. "Numerical and Experimental Investigation of Internal Flow Characteristics and Pressure Fluctuation in Inlet Passage of Axial Flow Pump under Deflection Flow Conditions," Energies, MDPI, vol. 14(17), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Yang & Zhongbin Li & Yao Yuan & Chao Liu & Yiqi Zhang & Yan Jin, 2021. "Numerical and Experimental Investigation of Internal Flow Characteristics and Pressure Fluctuation in Inlet Passage of Axial Flow Pump under Deflection Flow Conditions," Energies, MDPI, vol. 14(17), pages 1-22, August.
    2. Ziemowit Malecha, 2022. "Turbulence and Fluid Mechanics," Energies, MDPI, vol. 15(3), pages 1-4, February.
    3. Danyang Du & Yong Han & Yu Xiao & Lu Yang & Xuanwei Shi, 2022. "The Effects of Meridian Surface Shape on the Pressure Pulsation of a Multi-Stage Electric Submersible Pump," Sustainability, MDPI, vol. 14(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5643-:d:1203781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.