IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5465-d1196923.html
   My bibliography  Save this article

Implementation of Phasor Measurement Unit Based on Phase-Locked Loop Techniques: A Comprehensive Review

Author

Listed:
  • Vasilis Giotopoulos

    (School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), 15780 Athens, Greece)

  • Georgios Korres

    (School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), 15780 Athens, Greece)

Abstract

The dynamic monitoring, control, and protection of modern power systems in real time require time-stamped electrical measurements to accurately estimate the bus voltage phasors using the state estimation function under normal and abnormal conditions. These measurements can be acquired by time-synchronized devices, known as phasor measurement units (PMUs). PMUs can measure bus voltage and branch current phasors of a three-phase network, as well as the frequency and the rate of change of frequency (ROCOF), with high speed, accuracy and time stamping provided by global positioning system (GPS) at the coordinated universal time (UTC). Various phasor estimation algorithms have been proposed in the literature, while most of them are concentrated in the discrete Fourier transform (DFT) algorithm, where an integer number of samples multiple of the nominal frequency is required for the computations. In cases where the frequency of the power grid deviates from its nominal value, the raw application of the DFT approach can lead to large errors during phasor estimation. Another approach of the phasor estimation is based on the phase-locked loop (PLL) techniques, widely used in grid tie inverters. PLL techniques can track dynamically (continuous time) the estimated frequency to the time-variant frequency of the power grid. A brief introduction to the basic concepts of the synchrophasor definition is provided, while the main DFT methods for synchrophasor estimation according to recent literature are mentioned. PLL-based PMU techniques are reviewed for both steady-state and dynamic conditions according to IEEE standards. In conclusion, the performance of PLL-based PMU algorithms presented in this literature review is discussed.

Suggested Citation

  • Vasilis Giotopoulos & Georgios Korres, 2023. "Implementation of Phasor Measurement Unit Based on Phase-Locked Loop Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5465-:d:1196923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5465/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayan H. Bany Fawaz & Issam A. Smadi & Saher A. Albatran & Ibrahem E. Atawi, 2024. "Advanced Single-Phase PLL-Based Transfer Delay Operators: A Comprehensive Review and Optimal Loop Filter Design," Energies, MDPI, vol. 17(2), pages 1-44, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5465-:d:1196923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.