IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5455-d1196635.html
   My bibliography  Save this article

Wind Turbine Active Fault Tolerant Control Based on Backstepping Active Disturbance Rejection Control and a Neurofuzzy Detector

Author

Listed:
  • Hamza Assia

    (Departement of Electrical Engineering, Laboratory of Automation and Systems Analysis (LAAS), National Polytechnic School of Oran (Maurice Audin), Oran 31000, Algeria)

  • Houari Merabet Boulouiha

    (Departement of Electrical Engineering, Laboratory of Automation and Systems Analysis (LAAS), National Polytechnic School of Oran (Maurice Audin), Oran 31000, Algeria)

  • William David Chicaiza

    (Department of System Engineering and Automatic Control, University of Seville, 41092 Seville, Spain)

  • Juan Manuel Escaño

    (Department of System Engineering and Automatic Control, University of Seville, 41092 Seville, Spain)

  • Abderrahmane Kacimi

    (Department of Instrumentation Maintenance, Institute of Maintenance and Industrial Safety, Oran 31000, Algeria)

  • José Luis Martínez-Ramos

    (Department of Electrical Engineering, University of Seville, 41092 Seville, Spain)

  • Mouloud Denai

    (Department of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB, UK)

Abstract

Wind energy conversion systems have become an important part of renewable energy history due to their accessibility and cost-effectiveness. Offshore wind farms are seen as the future of wind energy, but they can be very expensive to maintain if faults occur. To achieve a reliable and consistent performance, modern wind turbines require advanced fault detection and diagnosis methods. The current research introduces a proposed active fault-tolerant control (AFTC) system that uses backstepping active disturbance rejection theory (BADRC) and an adaptive neurofuzzy system (ANFIS) detector in combination with principal component analysis (PCA) to compensate for system disturbances and maintain performance even when a generator actuator fault occurs. The simulation outcomes demonstrate that the suggested method successfully addresses the actuator generator torque failure problem by isolating the faulty actuator, providing a reliable and robust solution to prevent further damage. The neurofuzzy detector demonstrates outstanding performance in detecting false data in torque, achieving a precision of 90.20 % for real data and 100 % for false data. With a recall of 100 % , no false negatives were observed. The overall accuracy of 95.10 % highlights the detector’s ability to reliably classify data as true or false. These findings underscore the robustness of the detector in detecting false data, ensuring the accuracy and reliability of the application presented. Overall, the study concludes that BADRC and ANFIS detection and isolation can improve the reliability of offshore wind farms and address the issue of actuator generator torque failure.

Suggested Citation

  • Hamza Assia & Houari Merabet Boulouiha & William David Chicaiza & Juan Manuel Escaño & Abderrahmane Kacimi & José Luis Martínez-Ramos & Mouloud Denai, 2023. "Wind Turbine Active Fault Tolerant Control Based on Backstepping Active Disturbance Rejection Control and a Neurofuzzy Detector," Energies, MDPI, vol. 16(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5455-:d:1196635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5455/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5455/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuemin Zheng & Jin Tao & Qinglin Sun & Hao Sun & Zengqiang Chen & Mingwei Sun & Feng Duan, 2022. "Deep-Reinforcement-Learning-Based Active Disturbance Rejection Control for Lateral Path Following of Parafoil System," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    2. Btissam Majout & Badre Bossoufi & Manale Bouderbala & Mehedi Masud & Jehad F. Al-Amri & Mohammed Taoussi & Mohammed El Mahfoud & Saad Motahhir & Mohammed Karim, 2022. "Improvement of PMSG-Based Wind Energy Conversion System Using Developed Sliding Mode Control," Energies, MDPI, vol. 15(5), pages 1-17, February.
    3. Machado, Diogo Ortiz & Chicaiza, William D. & Escaño, Juan M. & Gallego, Antonio J. & de Andrade, Gustavo A. & Normey-Rico, Julio E. & Bordons, Carlos & Camacho, Eduardo F., 2023. "Digital twin of an absorption chiller for solar cooling," Renewable Energy, Elsevier, vol. 208(C), pages 36-51.
    4. Machado, Diogo Ortiz & Chicaiza, William D. & Escaño, Juan M. & Gallego, Antonio J. & de Andrade, Gustavo A. & Normey-Rico, Julio E. & Bordons, Carlos & Camacho, Eduardo F., 2023. "Digital twin of a Fresnel solar collector for solar cooling," Applied Energy, Elsevier, vol. 339(C).
    5. Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    2. Fathabadi, Hassan, 2019. "Recovering waste vibration energy of an automobile using shock absorbers included magnet moving-coil mechanism and adding to overall efficiency using wind turbine," Energy, Elsevier, vol. 189(C).
    3. Anto Anbarasu Yesudhas & Young Hoon Joo & Seong Ryong Lee, 2022. "Reference Model Adaptive Control Scheme on PMVG-Based WECS for MPPT under a Real Wind Speed," Energies, MDPI, vol. 15(9), pages 1-17, April.
    4. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    5. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    6. Pallavicini, Jacopo & Fedeli, Matteo & Scolieri, Giacomo Domenico & Tagliaferri, Francesca & Parolin, Jacopo & Sironi, Selena & Manenti, Flavio, 2023. "Digital twin-based optimization and demo-scale validation of absorption columns using sodium hydroxide/water mixtures for the purification of biogas streams subject to impurity fluctuations," Renewable Energy, Elsevier, vol. 219(P1).
    7. Yuemin Zheng & Jin Tao & Qinglin Sun & Hao Sun & Zengqiang Chen & Mingwei Sun, 2023. "Adaptive Active Disturbance Rejection Load Frequency Control for Power System with Renewable Energies Using the Lyapunov Reward-Based Twin Delayed Deep Deterministic Policy Gradient Algorithm," Sustainability, MDPI, vol. 15(19), pages 1-25, October.
    8. Song, Dongran & Yang, Jian & Cai, Zili & Dong, Mi & Su, Mei & Wang, Yinghua, 2017. "Wind estimation with a non-standard extended Kalman filter and its application on maximum power extraction for variable speed wind turbines," Applied Energy, Elsevier, vol. 190(C), pages 670-685.
    9. Btissam Majout & Houda El Alami & Hassna Salime & Nada Zine Laabidine & Youness El Mourabit & Saad Motahhir & Manale Bouderbala & Mohammed Karim & Badre Bossoufi, 2022. "A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG," Energies, MDPI, vol. 15(17), pages 1-41, August.
    10. Akshay Ranade & Javier Gómez & Andrew de Juan & William D. Chicaiza & Michael Ahern & Juan M. Escaño & Andriy Hryshchenko & Olan Casey & Aidan Cloonan & Dominic O’Sullivan & Ken Bruton & Alan McGibney, 2024. "Implementing Industry 4.0: An In-Depth Case Study Integrating Digitalisation and Modelling for Decision Support System Applications," Energies, MDPI, vol. 17(8), pages 1-28, April.
    11. Song, Dongran & Fan, Xinyu & Yang, Jian & Liu, Anfeng & Chen, Sifan & Joo, Young Hoon, 2018. "Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method," Applied Energy, Elsevier, vol. 224(C), pages 267-279.
    12. Fathabadi, Hassan, 2017. "Novel grid-connected solar/wind powered electric vehicle charging station with vehicle-to-grid technology," Energy, Elsevier, vol. 132(C), pages 1-11.
    13. Bizon, Nicu, 2018. "Optimal operation of fuel cell/wind turbine hybrid power system under turbulent wind and variable load," Applied Energy, Elsevier, vol. 212(C), pages 196-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5455-:d:1196635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.