IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5375-d1194212.html
   My bibliography  Save this article

Hydraulic Performance and Energy Dissipation Mechanism Analysis of the Tesla-Shaped Emitter

Author

Listed:
  • Peisen Du

    (College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Zhiqin Li

    (College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Ruixia Hao

    (College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Juanjuan Ma

    (College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Da Yan

    (College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

In this paper, a tesla-shaped emitter is proposed based on the structure of the “tesla valve” as the source of inspiration, so that the water flow in the channel would produce a variety of energy dissipation phenomena, such as diversion, hedging, and mixing, to explore the hydraulic performance and energy dissipation mechanism of the tesla-shaped emitter. The channel structure parameters were taken as factors, and 16 groups of orthogonal tests were arranged. Based on CFD technology, the pressure–flow relationship curve slope, flow ratio between the main channel and secondary channel, flow field, and head loss of the emitter were calculated and analyzed for different combinations of structural parameters. Based on a significance level α = 0.05 test, the main channel inlet section length (L 3 ) had a significant impact on the curve slope, and the secondary channel length (L 1 ) and main channel inlet section length (L 3 ) had a significant impact on the flow. The multiple linear regression mathematical models between the channel structure parameters and the curve slope and the flow were constructed. The larger the ratio between the main channel and the secondary channel flow, the better the hydraulic performance of the emitter. The channel unit loss coefficient increased linearly with the increase of the emitter inlet pressure, and its value ranged from 4.5769 to 8.1716, with an excellent energy dissipation effect. The hedge mixing of the water flow was the core of the energy dissipation of the tesla-shaped emitter. By appropriately increasing the inlet size of the main channel and other elements to increase the main channel flow and optimize the flow ratio between the main channel and the secondary channel, the mixing was improved, which consequently improved the hydraulic performance of the emitter.

Suggested Citation

  • Peisen Du & Zhiqin Li & Ruixia Hao & Juanjuan Ma & Da Yan, 2023. "Hydraulic Performance and Energy Dissipation Mechanism Analysis of the Tesla-Shaped Emitter," Energies, MDPI, vol. 16(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5375-:d:1194212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaoxi Li & Zhiqin Li & Peisen Du & Juanjuan Ma & Simin Li, 2023. "Mechanism Analysis of the Influence of Structural Parameters on the Hydraulic Performance of the Novel Y-Shaped Emitter," Agriculture, MDPI, vol. 13(6), pages 1-17, May.
    2. Xinhao Wu & Peilan Su & Jianhua Wu & Yusheng Zhang & Baohe Wang, 2022. "Research on the Relationship between Sediment Concentration and Centrifugal Pump Performance Parameters Based on CFD Mixture Model," Energies, MDPI, vol. 15(19), pages 1-19, October.
    3. Peisen Du & Zhiqin Li & Cuncai Wang & Juanjuan Ma, 2022. "Analysis of the Influence of the Channel Layout and Size on the Hydraulic Performance of Emitters," Agriculture, MDPI, vol. 12(4), pages 1-13, April.
    4. Cuncai Wang & Zhiqin Li & Juanjuan Ma, 2021. "Influence of Emitter Structure on Its Hydraulic Performance Based on the Vortex," Agriculture, MDPI, vol. 11(6), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yatao Xiao & Chaoxiang Sun & Dezhe Wang & Huiqin Li & Wei Guo, 2023. "Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace," Agriculture, MDPI, vol. 13(7), pages 1-18, July.
    2. Peisen Du & Zhiqin Li & Cuncai Wang & Juanjuan Ma, 2022. "Analysis of the Influence of the Channel Layout and Size on the Hydraulic Performance of Emitters," Agriculture, MDPI, vol. 12(4), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5375-:d:1194212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.