IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i4p541-d790931.html
   My bibliography  Save this article

Analysis of the Influence of the Channel Layout and Size on the Hydraulic Performance of Emitters

Author

Listed:
  • Peisen Du

    (College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Zhiqin Li

    (College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Cuncai Wang

    (College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Juanjuan Ma

    (College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

In this paper, a split-flow channel layout with one (group) inlet and two (group) outlets is adopted, based on computational fluid dynamics technology, and compared with the current commonly used channel with one (group) inlet and one (group) outlet emitter. On the premise of the same outlet spacing, the pressure–flow relationship curve and slope of the split-flow emitter were analyzed under the three channel layouts of non-return, single-sided re-entry, and bilateral re-entry, with different channel widths and lengths. When exploring the influence of the channel layout and size on the hydraulic performance of split-flow emitters, the results showed that when the split-flow emitter with a non-return channel is adopted and the hydraulic performance is not reduced, the single-side channel length is half that of the one-in-one-out emitter, meaning the channel width needs to be reduced by 15%. When the channel layout is a single-sided channel re-entry, the hydraulic performance is better than that of the one-in-one-out emitter; if the hydraulic performance of the two remains unchanged, the channel width can be increased by 10% or the single-sided channel length can be reduced by 20%. When the channel layout is a bilateral channel re-entry, the channel width can be increased by nearly 30% if the hydraulic performance of the 2 is consistent, and the single-side channel length is increased by about 50%. When the split-flow emitter adopts a non-return channel layout, the channel width needs to be reduced to ensure the hydraulic performance is consistent. If the layout of single-sided channel re-entry or bilateral channel re-entry is adopted, the hydraulic performance is better than that of the one-in-one-out emitter and the hydraulic performance of the two is consistent. Thus, the channel length can be reduced or the channel width increased, which is beneficial for improving the anti-clogging performance of the emitter.

Suggested Citation

  • Peisen Du & Zhiqin Li & Cuncai Wang & Juanjuan Ma, 2022. "Analysis of the Influence of the Channel Layout and Size on the Hydraulic Performance of Emitters," Agriculture, MDPI, vol. 12(4), pages 1-13, April.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:541-:d:790931
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/4/541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/4/541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cuncai Wang & Zhiqin Li & Juanjuan Ma, 2021. "Influence of Emitter Structure on Its Hydraulic Performance Based on the Vortex," Agriculture, MDPI, vol. 11(6), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peisen Du & Zhiqin Li & Ruixia Hao & Juanjuan Ma & Da Yan, 2023. "Hydraulic Performance and Energy Dissipation Mechanism Analysis of the Tesla-Shaped Emitter," Energies, MDPI, vol. 16(14), pages 1-17, July.
    2. Yatao Xiao & Chaoxiang Sun & Dezhe Wang & Huiqin Li & Wei Guo, 2023. "Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace," Agriculture, MDPI, vol. 13(7), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yatao Xiao & Chaoxiang Sun & Dezhe Wang & Huiqin Li & Wei Guo, 2023. "Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace," Agriculture, MDPI, vol. 13(7), pages 1-18, July.
    2. Peisen Du & Zhiqin Li & Ruixia Hao & Juanjuan Ma & Da Yan, 2023. "Hydraulic Performance and Energy Dissipation Mechanism Analysis of the Tesla-Shaped Emitter," Energies, MDPI, vol. 16(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:541-:d:790931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.