IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5285-d1190857.html
   My bibliography  Save this article

Research on the Whole Lifecycle Emission Reduction Effect of Buildings with Different Structures in Severely Cold Regions—A Case Study in China

Author

Listed:
  • Han Yang

    (Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan)

  • Koki Kikuta

    (Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan)

  • Motoya Hayashi

    (Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan)

Abstract

Since the construction industry is one of China’s high carbon emission industries, to achieve China’s carbon neutrality target by 2060, CO 2 emissions in cold regions must be reduced. At the same time, forests have excellent carbon sequestration abilities, so this paper takes residential buildings in severely cold regions as the object of carbon emission reduction research. A model of a two-story building in Changchun was constructed, and the life-cycle carbon emissions of reinforced concrete and wood structures were measured using the life-cycle evaluation method as the basis for calculation and simulation with DesignBuilderVer.7 software. The results show that the life-cycle carbon emission of a wood structure house is 61.46 t less than that of a reinforced concrete house, and the life-cycle carbon emission reduction rate of a wood structure house is 43.39%. Based on the data, it has been proven that wooden structures effectively reduce carbon dioxide emissions during the building life cycle while enhancing building performance, given the same structural conditions.

Suggested Citation

  • Han Yang & Koki Kikuta & Motoya Hayashi, 2023. "Research on the Whole Lifecycle Emission Reduction Effect of Buildings with Different Structures in Severely Cold Regions—A Case Study in China," Energies, MDPI, vol. 16(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5285-:d:1190857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wente Pan & Hongyuan Mei, 2020. "A Design Strategy for Energy-Efficient Rural Houses in Severe Cold Regions," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    2. Cai, W.G. & Wu, Y. & Zhong, Y. & Ren, H., 2009. "China building energy consumption: Situation, challenges and corresponding measures," Energy Policy, Elsevier, vol. 37(6), pages 2054-2059, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    2. Yang, Li & He, Bao-jie & Ye, Miao, 2014. "The application of solar technologies in building energy efficiency: BISE design in solar-powered residential buildings," Technology in Society, Elsevier, vol. 38(C), pages 111-118.
    3. Wei Wei & Ling-Yun He, 2017. "China Building Energy Consumption: Definitions and Measures from an Operational Perspective," Energies, MDPI, vol. 10(5), pages 1-16, April.
    4. Zhang, Li & Wu, Jing & Liu, Hongyu, 2018. "Policies to enhance the drivers of green housing development in China," Energy Policy, Elsevier, vol. 121(C), pages 225-235.
    5. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2019. "Assessing the Energy and Indoor Air Quality Performance for a Three-Story Building Using an Integrated Model, Part One: The Need for Integration," Energies, MDPI, vol. 12(24), pages 1-18, December.
    6. He, Guoqing & Zheng, Yun & Wu, Yong & Cui, Zhenhua & Qian, Kuangliang, 2015. "Promotion of building-integrated solar water heaters in urbanized areas in China: Experience, potential, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 643-656.
    7. Zhaocheng Li & Yu Song, 2022. "Energy Consumption Linkages of the Chinese Construction Sector," Energies, MDPI, vol. 15(5), pages 1-13, February.
    8. Yingtao Qi & Xiaodi Li & Yupeng Wang & Dian Zhou, 2023. "Research on Indoor Thermal Environment Analysis and Optimization Strategy of Rural Dwellings around Xi’an Based on PET Evaluation," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    9. Zhang, Jiefeng & Bai, Zhipeng & Chang, Victor W.C. & Ding, Xiao, 2011. "Balancing BEC and IAQ in civil buildings during rapid urbanization in China: Regulation, interplay and collaboration," Energy Policy, Elsevier, vol. 39(10), pages 5778-5790, October.
    10. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    11. Egging, Ruud, 2013. "Drivers, trends, and uncertainty in long-term price projections for energy management in public buildings," Energy Policy, Elsevier, vol. 62(C), pages 617-624.
    12. Linwei Pan & Minglei Zhu & Ningning Lang & Tengfei Huo, 2020. "What Is the Amount of China’s Building Floor Space from 1996 to 2014?," IJERPH, MDPI, vol. 17(16), pages 1-17, August.
    13. Ma, Minda & Cai, Wei & Cai, Weiguang, 2018. "Carbon abatement in China's commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods," Energy, Elsevier, vol. 165(PA), pages 350-368.
    14. Hong Hu & Stan Geertman & Pieter Hooimeijer, 2014. "The willingness to pay for green apartments: The case of Nanjing, China," Urban Studies, Urban Studies Journal Limited, vol. 51(16), pages 3459-3478, December.
    15. Berardi, Umberto, 2017. "A cross-country comparison of the building energy consumptions and their trends," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 230-241.
    16. Lyu, Weihua & Li, Xianting & Yan, Shuai & Jiang, Sihang, 2020. "Utilizing shallow geothermal energy to develop an energy efficient HVAC system," Renewable Energy, Elsevier, vol. 147(P1), pages 672-682.
    17. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    18. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    19. Du, Ping & Zheng, Li-Qun & Xie, Bai-Chen & Mahalingam, Arjun, 2014. "Barriers to the adoption of energy-saving technologies in the building sector: A survey study of Jing-jin-tang, China," Energy Policy, Elsevier, vol. 75(C), pages 206-216.
    20. Lifang Liu & Yakun Li & Leixiang Long, 2022. "Application Research of a Biomass Insulation Material: Eliminating Building Thermal Bridges," Sustainability, MDPI, vol. 14(12), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5285-:d:1190857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.