IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5214-d1188538.html
   My bibliography  Save this article

Assessment of Energy Efficiency Using an Energy Monitoring System: A Case Study of a Major Energy-Consuming Enterprise in Vietnam

Author

Listed:
  • Minh Nguyen Dat

    (Faculty of Industrial and Energy Management, Electric Power University, Ministry of Industry and Trade, Hanoi 100000, Vietnam)

  • Kien Duong Trung

    (Faculty of Industrial and Energy Management, Electric Power University, Ministry of Industry and Trade, Hanoi 100000, Vietnam)

  • Phap Vu Minh

    (Institute of Energy Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
    Faculty of Materials and Energy Sciences, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam)

  • Chau Dinh Van

    (Department of Personnel and Organization, Electric Power University, Ministry of Industry and Trade, Hanoi 100000, Vietnam)

  • Quynh T. Tran

    (Institute of Energy Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
    Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, USA)

  • Trung Nguyen Ngoc

    (Department of Personnel and Organization, Electric Power University, Ministry of Industry and Trade, Hanoi 100000, Vietnam)

Abstract

Vietnam’s economy has been growing rapidly in the last 20 years, leading to significant increases in energy consumption as well as in carbon emissions. Most electricity is consumed by loads of industry and construction due to the country’s socio-economic development strategy. An energy saving strategy cannot be achieved if the industry factories lack energy consumption data. The installation of energy monitoring systems can help to improve energy efficiency by supplying daily, monthly, and yearly energy consumption reports. Moreover, major energy-consuming enterprises in Vietnam must implement solutions for energy-efficient use as prescribed in the Law on Energy Efficient Use. Therefore, this study aimed to determine the impact of an energy monitoring system as an improvement solution for energy efficiency in a typical major energy-consuming enterprise in Vietnam. The study’s results, after six months, show that the total saved electricity after installing the power monitoring system was 191,923 kWh. The company saved approximately 19.584 USD and reduced emission to the environment by 139 tons of CO 2 . In addition, the return on investment time of power monitoring systems is about 14 months, while the annual energy costs of the factory can be reduced by about 9.62% per year. Therefore, power monitoring systems should be promoted in factories with different scales to control energy wastage in the domestic industry field.

Suggested Citation

  • Minh Nguyen Dat & Kien Duong Trung & Phap Vu Minh & Chau Dinh Van & Quynh T. Tran & Trung Nguyen Ngoc, 2023. "Assessment of Energy Efficiency Using an Energy Monitoring System: A Case Study of a Major Energy-Consuming Enterprise in Vietnam," Energies, MDPI, vol. 16(13), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5214-:d:1188538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuru Guan & Jin Yan & Yuli Shan & Yannan Zhou & Ye Hang & Ruoqi Li & Yu Liu & Binyuan Liu & Qingyun Nie & Benedikt Bruckner & Kuishuang Feng & Klaus Hubacek, 2023. "Burden of the global energy price crisis on households," Nature Energy, Nature, vol. 8(3), pages 304-316, March.
    2. Phu Viet Le, 2019. "Energy demand and factor substitution in Vietnam: evidence from two recent enterprise surveys," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-17, December.
    3. Liu, Weipeng & Peng, Tao & Tang, Renzhong & Umeda, Yasushi & Hu, Luoke, 2020. "An Internet of Things-enabled model-based approach to improving the energy efficiency of aluminum die casting processes," Energy, Elsevier, vol. 202(C).
    4. Abbasi, Kashif Raza & Shahbaz, Muhammad & Zhang, Jinjun & Irfan, Muhammad & Alvarado, Rafael, 2022. "Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy," Renewable Energy, Elsevier, vol. 187(C), pages 390-402.
    5. Tehseen Akhtar & Asif Ur Rehman & Mohsin Jamil & Syed Omer Gilani, 2020. "Impact of an Energy Monitoring System on the Energy Efficiency of an Automobile Factory: A Case Study," Energies, MDPI, vol. 13(10), pages 1-20, May.
    6. Malinauskaite, J. & Jouhara, H. & Ahmad, L. & Milani, M. & Montorsi, L. & Venturelli, M., 2019. "Energy efficiency in industry: EU and national policies in Italy and the UK," Energy, Elsevier, vol. 172(C), pages 255-269.
    7. Hien, P.D., 2019. "Excessive electricity intensity of Vietnam: Evidence from a comparative study of Asia-Pacific countries," Energy Policy, Elsevier, vol. 130(C), pages 409-417.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mantas Plienis & Tomas Deveikis & Audrius Jonaitis & Saulius Gudžius & Inga Konstantinavičiūtė & Donata Putnaitė, 2023. "Improved Methodology for Power Transformer Loss Evaluation: Algorithm Refinement and Resonance Risk Analysis," Energies, MDPI, vol. 16(23), pages 1-16, November.
    2. Izabela Jonek-Kowalska & Sara Rupacz, 2023. "The Innovative Nature of Selected Polish Companies in the Energy Sector Compared to the Use of Renewable Energy Sources from a Financial and an Investor’s Perspective," Resources, MDPI, vol. 12(12), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vo, Duc Hong & Vo, Long Hai & Ho, Chi Minh, 2022. "Regional convergence of nonrenewable energy consumption in Vietnam," Energy Policy, Elsevier, vol. 169(C).
    2. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    3. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    4. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    5. Lanre Ibrahim, Ridwan & Bello Ajide, Kazeem & Usman, Muhammad & Kousar, Rakhshanda, 2022. "Heterogeneous effects of renewable energy and structural change on environmental pollution in Africa: Do natural resources and environmental technologies reduce pressure on the environment?," Renewable Energy, Elsevier, vol. 200(C), pages 244-256.
    6. Nicholas Bamegne Nambie & Philomena Dadzie & Dorcas Oye Haywood-Dadzie, 2023. "Measuring the Effect of Income Inequality, Financial Inclusion, Investment, and Unemployment, on Economic Growth in Africa: A Moderating Role of Digital Financial Technology," International Journal of Economics and Financial Issues, Econjournals, vol. 13(4), pages 111-124, July.
    7. Chien-Ming Wang & Tsung-Pao Wu, 2022. "Does tourism promote or reduce environmental pollution? Evidence from major tourist arrival countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3334-3355, March.
    8. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    9. Zheng, Jun & Qi, Tiening & Hu, Xinyu & Pan, Qi & Zhang, Zhiyi & Guan, Aizhi & Ling, Wei & Peng, Tao & Wu, Jian & Wang, Wei, 2024. "Energy consumption assessment and economic analysis of a novel sustainable electro-machining auxiliary system," Applied Energy, Elsevier, vol. 357(C).
    10. Jahanger, Atif & Hossain, Mohammad Razib & Usman, Muhammad & Chukwuma Onwe, Joshua, 2023. "Recent scenario and nexus between natural resource dependence, energy use and pollution cycles in BRICS region: Does the mediating role of human capital exist?," Resources Policy, Elsevier, vol. 81(C).
    11. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    12. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
    13. Zhou, Li & Li, Fashe & Duan, Yaozong & Wang, Hua, 2023. "Effect of phospholipids on the premixed combustion behavior of Jatropha curcas biodiesel," Renewable Energy, Elsevier, vol. 218(C).
    14. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2021. "Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries?," Energy Policy, Elsevier, vol. 153(C).
    15. Yang, Yunpeng & Yang, Weixin & Chen, Hongmin & Li, Yin, 2020. "China’s energy whistleblowing and energy supervision policy: An evolutionary game perspective," Energy, Elsevier, vol. 213(C).
    16. Zhou, Yuanxiang & Adebayo, Tomiwa Sunday & Yin, Weichuan & Abbas, Shujaat, 2023. "The co-movements among renewable energy, total environmental tax, and ecological footprint in the United Kingdom: Evidence from wavelet local multiple correlation analysis," Energy Economics, Elsevier, vol. 126(C).
    17. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    18. Giacomo Di Foggia & Massimo Beccarello & Marco Borgarello & Francesca Bazzocchi & Stefano Moscarelli, 2022. "Market-Based Instruments to Promote Energy Efficiency: Insights from the Italian Case," Energies, MDPI, vol. 15(20), pages 1-16, October.
    19. Bouazza Elamine Zemri & Sidi Mohamed Boumediene Khetib, 2024. "Can Sustainable Economic Development Curtail Carbon Dioxide Emissions? Insights from Algeria’s Industry," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 70-83.
    20. Xu, Yizhen & Qin, Botao & Shi, Quanlin & Hao, Mingyue & Shao, Xu & Jiang, Zhe & Ma, Zujie, 2023. "Study on the preparation and properties of colloidal gas foam concrete to prevent spontaneous combustion of coal," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5214-:d:1188538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.