IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5076-d1184018.html
   My bibliography  Save this article

Analysis of Regular Wave Floating Characteristics of Mono-Column Composite Bucket Foundation during Towing

Author

Listed:
  • Jiandong Xiao

    (Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China)

  • Junfeng Liu

    (Three Gorges New Energy Yangjiang Power Generation Co., Ltd., Yangjiang 529532, China)

  • Yifeng Lin

    (Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China)

  • Puyang Zhang

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China)

  • Yang Gao

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China)

Abstract

The mono-column composite bucket foundation has gained practical application in offshore wind power due to its advantages of simple fabrication, fast construction, and low cost. To ensure the safe and stable transportation of this structure to its designated sinking position, this study focuses on producing a scaled model of the mono-column composite bucket foundation. Through model testing, the floating characteristics of the structure during towing in regular waves are examined. The conclusion of the study is as follows: a significant towing force is required to provide the initial velocity of the structure. As the wave period and height increase, the structure necessitates a larger towing force, experiences greater pitch and heave responses, and exhibits more noticeable fluctuations in internal air pressure. The paper aims at providing practical engineering insights.

Suggested Citation

  • Jiandong Xiao & Junfeng Liu & Yifeng Lin & Puyang Zhang & Yang Gao, 2023. "Analysis of Regular Wave Floating Characteristics of Mono-Column Composite Bucket Foundation during Towing," Energies, MDPI, vol. 16(13), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5076-:d:1184018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongyan Ding & Zuntao Feng & Puyang Zhang & Conghuan Le & Yaohua Guo, 2020. "Floating Performance of a Composite Bucket Foundation with an Offshore Wind Tower during Transportation," Energies, MDPI, vol. 13(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingqian Meng & Hongyan Ding, 2022. "Experimental Study on the Contact Force between the Vessel and CBF in the Integrated Floating Transportation Process of Offshore Wind Power," Energies, MDPI, vol. 15(21), pages 1-10, October.
    2. Yu Hu & Jian Yang & Charalampos Baniotopoulos, 2020. "Repowering Steel Tubular Wind Turbine Towers Enhancing them by Internal Stiffening Rings," Energies, MDPI, vol. 13(7), pages 1-23, March.
    3. Alexandre Mathern & Christoph von der Haar & Steffen Marx, 2021. "Concrete Support Structures for Offshore Wind Turbines: Current Status, Challenges, and Future Trends," Energies, MDPI, vol. 14(7), pages 1-31, April.
    4. Antonio Galán-Lavado & Matilde Santos, 2021. "Analysis of the Effects of the Location of Passive Control Devices on the Platform of a Floating Wind Turbine," Energies, MDPI, vol. 14(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5076-:d:1184018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.