IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4871-d1176882.html
   My bibliography  Save this article

Optimization of Polypropylene Waste Recycling Products as Alternative Fuels through Non-Catalytic Thermal and Catalytic Hydrocracking Using Fresh and Spent Pt/Al 2 O 3 and NiMo/Al 2 O 3 Catalysts

Author

Listed:
  • Murtadha S. Al-Iessa

    (Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq)

  • Bashir Y. Al-Zaidi

    (Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq)

  • Riaydh S. Almukhtar

    (Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq)

  • Zaidoon M. Shakor

    (Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq)

  • Ihsan Hamawand

    (Process Operation, Wide Bay Water & Waste Services, Fraser Coast Regional Council, Hervey Bay Qld, QLD 4655, Australia)

Abstract

In this work, the conversion of waste polypropylene to alternative fuels (liquid and gas) was performed through non-catalytic thermal and catalytic hydrocracking over NiMo/Al 2 O 3 and Pt/Al 2 O 3 catalysts. The process was carried out in an autoclave batch reactor at a temperature of 450 °C and a pressure of 20 bar, which were selected based on experimental optimization. The spent catalyst was also successfully regenerated at 700 °C under a hot airflow. Experiments were conducted to determine the optimum conditions to completely separate the deactivated catalyst from the solid residue easily. The regenerated catalyst was reused to facilitate the economic cost reduction of the process. The reactivated catalysts have almost the same catalytic properties as the fresh catalysts; this was confirmed by several characterization techniques, such as TGA, XRD, SEM, EDX, BET and FTIR. The produced liquids/gases were quantified and classified into their fractions by the number of carbon atoms and gasoline to diesel ratio using GC/MS. The viscosity, density, API gravity, pour point and flash point of oil cuts were also investigated to evaluate the quality of the resulting liquid from the reactions. The NiMo/Al 2 O 3 catalyst gave the highest liquid hydrocarbons yield of 86 wt%, while the highest weight products of gasoline range hydrocarbon fractions of 49.85 wt% were found over the Pt/Al 2 O 3 catalyst. Almost the same catalytic behavior was found with the regenerated catalysts compared to the fresh catalysts. However, the highest gaseous products at 20.8 wt% were found in the non-catalytic thermal products with an increase in the diesel fuel range of 80.83 wt%. The kinetic model was implemented using six lumps and fifteen reactions, and the apparent activation energies for the gasoline and diesel fractions were calculated. In general, all primary and secondary reactions show greater activation energy values on the Pt/Al 2 O 3 catalyst than on the NiMo/Al 2 O 3 catalyst.

Suggested Citation

  • Murtadha S. Al-Iessa & Bashir Y. Al-Zaidi & Riaydh S. Almukhtar & Zaidoon M. Shakor & Ihsan Hamawand, 2023. "Optimization of Polypropylene Waste Recycling Products as Alternative Fuels through Non-Catalytic Thermal and Catalytic Hydrocracking Using Fresh and Spent Pt/Al 2 O 3 and NiMo/Al 2 O 3 Catalysts," Energies, MDPI, vol. 16(13), pages 1-29, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4871-:d:1176882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4871/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4871/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azubuike Francis Anene & Siw Bodil Fredriksen & Kai Arne Sætre & Lars-Andre Tokheim, 2018. "Experimental Study of Thermal and Catalytic Pyrolysis of Plastic Waste Components," Sustainability, MDPI, vol. 10(11), pages 1-11, October.
    2. Stella Bezergianni & Athanasios Dimitriadis & Gian-Claudio Faussone & Dimitrios Karonis, 2017. "Alternative Diesel from Waste Plastics," Energies, MDPI, vol. 10(11), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    2. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Anna Matuszewska & Adam Hańderek & Maciej Paczuski & Krzysztof Biernat, 2021. "Hydrocarbon Fractions from Thermolysis of Waste Plastics as Components of Engine Fuels," Energies, MDPI, vol. 14(21), pages 1-14, November.
    4. Gian Claudio Faussone & Andrej Kržan & Miha Grilc, 2021. "Conversion of Marine Litter from Venice Lagoon into Marine Fuels via Thermochemical Route: The Overview of Products, Their Yield, Quality and Environmental Impact," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    5. Anastasia Zabaniotou & Ioannis Vaskalis, 2023. "Economic Assessment of Polypropylene Waste (PP) Pyrolysis in Circular Economy and Industrial Symbiosis," Energies, MDPI, vol. 16(2), pages 1-26, January.
    6. Eunhye Song & Daegi Kim & Cheol-Jin Jeong & Do-Yong Kim, 2019. "A Kinetic Study on Combustible Coastal Debris Pyrolysis via Thermogravimetric Analysis," Energies, MDPI, vol. 12(5), pages 1-10, March.
    7. Nugroho, Rusdan Aditya Aji & Alhikami, Akhmad Faruq & Wang, Wei-Cheng, 2023. "Thermal decomposition of polypropylene plastics through vacuum pyrolysis," Energy, Elsevier, vol. 277(C).
    8. Escalante, Jamin & Chen, Wei-Hsin & Tabatabaei, Meisam & Hoang, Anh Tuan & Kwon, Eilhann E. & Andrew Lin, Kun-Yi & Saravanakumar, Ayyadurai, 2022. "Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Elżbieta Szostak & Piotr Duda & Andrzej Duda & Natalia Górska & Arkadiusz Fenicki & Patryk Molski, 2020. "Characteristics of Plastic Waste Processing in the Modern Recycling Plant Operating in Poland," Energies, MDPI, vol. 14(1), pages 1-17, December.
    10. Soyoung Han & Yong-Chul Jang & Yeon-Seok Choi & Sang-Kyu Choi, 2020. "Thermogravimetric Kinetic Study of Automobile Shredder Residue (ASR) Pyrolysis," Energies, MDPI, vol. 13(6), pages 1-16, March.
    11. Haifeng Liu & Junsheng Ma & Laihui Tong & Guixiang Ma & Zunqing Zheng & Mingfa Yao, 2018. "Investigation on the Potential of High Efficiency for Internal Combustion Engines," Energies, MDPI, vol. 11(3), pages 1-20, February.
    12. Khairil & Teuku Meurah Indra Riayatsyah & Samsul Bahri & Sarwo Edhy Sofyan & Jalaluddin Jalaluddin & Fitranto Kusumo & Arridina Susan Silitonga & Yanti Padli & Muhammad Jihad & Abd Halim Shamsuddin, 2020. "Experimental Study on the Performance of an SI Engine Fueled by Waste Plastic Pyrolysis Oil–Gasoline Blends," Energies, MDPI, vol. 13(16), pages 1-15, August.
    13. Spyridon Achinas & Johan Horjus & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "A PESTLE Analysis of Biofuels Energy Industry in Europe," Sustainability, MDPI, vol. 11(21), pages 1-24, October.
    14. Rahman, Md Hafizur & Bhoi, Prakashbhai R. & Menezes, Pradeep L., 2023. "Pyrolysis of waste plastics into fuels and chemicals: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4871-:d:1176882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.