IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4784-d1173852.html
   My bibliography  Save this article

A Novel Renewable Smart Grid Model to Sustain Solar Power Generation

Author

Listed:
  • Mohammad Abdul Baseer

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • Ibrahim Alsaduni

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

Abstract

The stability performance of smart grid power systems is critical and requires special attention. Additionally, the combination of Battery Energy Storage (BES) systems, Solar Photovoltaic (SPV), and wind systems in the intelligent grid model provides utilities with excellent efficiency and dependability. However, a coordination grid with PV and other resources frequently results in severe issues, such as outages or power disruptions. A power outage in the grid might result in a power loss in the delivery system. As a result, the distributed grid model’s dependable performance is intended for integrated wind energy, SPV arrays, and BE systems. This paper proposes a renewable intelligent grid model to sustain solar power generation. The model incorporates a boost converter to optimize the performance of solar panels by converting the DC power generated by the panels into AC power for use in the grid. The boost converter is optimized using a novel Horse Herd Optimization Algorithm (HOA) method. In this case, the HOA method is used to optimize the control parameters of the boost converter, such as the duty cycle and the inductor and capacitor values. According to the final results, the proposed method has reduced the Total Harmonic Deformation (THD) and power loss. Additionally, the proposed method outperformed existing strategies related to the Expected Energy Not Supplied (EENS), Loss of Load Probability (LOLP), and Loss of Load Expected (LOLE), indicating the sustainability of power generation.

Suggested Citation

  • Mohammad Abdul Baseer & Ibrahim Alsaduni, 2023. "A Novel Renewable Smart Grid Model to Sustain Solar Power Generation," Energies, MDPI, vol. 16(12), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4784-:d:1173852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4784/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4784/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ben Jebli, Mehdi & Farhani, Sahbi & Guesmi, Khaled, 2020. "Renewable energy, CO2 emissions and value added: Empirical evidence from countries with different income levels," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 402-410.
    2. Azad, AmirHossein & Shateri, Hossein, 2023. "Design and optimization of an entirely hybrid renewable energy system (WT/PV/BW/HS/TES/EVPL) to supply electrical and thermal loads with considering uncertainties in generation and consumption," Applied Energy, Elsevier, vol. 336(C).
    3. Noorollahi, Younes & Ghenaatpisheh Senani, Ali & Fadaei, Ahmad & Simaee, Mobina & Moltames, Rahim, 2022. "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 186(C), pages 89-104.
    4. Gençer, Emre & Torkamani, Sarah & Miller, Ian & Wu, Tony Wenzhao & O'Sullivan, Francis, 2020. "Sustainable energy system analysis modeling environment: Analyzing life cycle emissions of the energy transition," Applied Energy, Elsevier, vol. 277(C).
    5. Quy Nguyen Minh & Van-Hau Nguyen & Vu Khanh Quy & Le Anh Ngoc & Abdellah Chehri & Gwanggil Jeon, 2022. "Edge Computing for IoT-Enabled Smart Grid: The Future of Energy," Energies, MDPI, vol. 15(17), pages 1-16, August.
    6. Solangi, Yasir Ahmed & Longsheng, Cheng & Shah, Syed Ahsan Ali, 2021. "Assessing and overcoming the renewable energy barriers for sustainable development in Pakistan: An integrated AHP and fuzzy TOPSIS approach," Renewable Energy, Elsevier, vol. 173(C), pages 209-222.
    7. Pitelis, Alkis & Vasilakos, Nicholas & Chalvatzis, Konstantinos, 2020. "Fostering innovation in renewable energy technologies: Choice of policy instruments and effectiveness," Renewable Energy, Elsevier, vol. 151(C), pages 1163-1172.
    8. Gozgor, Giray & Mahalik, Mantu Kumar & Demir, Ender & Padhan, Hemachandra, 2020. "The impact of economic globalization on renewable energy in the OECD countries," Energy Policy, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chintan Patel & Tanmoy Malakar & S. Sreejith, 2023. "Assessment of Converter Performance in Hybrid AC-DC Power System under Optimal Power Flow with Minimum Number of DC Link Control Variables," Energies, MDPI, vol. 16(15), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinyi Hu, 2023. "Linguistic Multiple-Attribute Decision Making Based on Regret Theory and Minimax-DEA," Mathematics, MDPI, vol. 11(20), pages 1-14, October.
    2. Yao Zhu & Shousheng Chai & Jieqi Chen & Ian Phau, 2024. "How was rural tourism developed in China? Examining the impact of China’s evolving rural tourism policies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28945-28969, November.
    3. Gumber, Anurag & Zana, Riccardo & Steffen, Bjarne, 2024. "A global analysis of renewable energy project commissioning timelines," Applied Energy, Elsevier, vol. 358(C).
    4. Jiang, Yihuo & Ni, Hongliang & Ni, Yihan & Guo, Xiaomei, 2023. "Assessing environmental, social, and governance performance and natural resource management policies in China's dual carbon era for a green economy," Resources Policy, Elsevier, vol. 85(PB).
    5. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    6. Chankook Park & Wan Gyu Heo & Myung Eun Lee, 2024. "Study on Consumers’ Perceived Benefits and Risks of Smart Energy System," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 288-300, May.
    7. Murshed, Muntasir & Saboori, Behnaz & Madaleno, Mara & Wang, Hong & Doğan, Buhari, 2022. "Exploring the nexuses between nuclear energy, renewable energy, and carbon dioxide emissions: The role of economic complexity in the G7 countries," Renewable Energy, Elsevier, vol. 190(C), pages 664-674.
    8. Tomasz Rokicki & Radosław Jadczak & Adam Kucharski & Piotr Bórawski & Aneta Bełdycka-Bórawska & András Szeberényi & Aleksandra Perkowska, 2022. "Changes in Energy Consumption and Energy Intensity in EU Countries as a Result of the COVID-19 Pandemic by Sector and Area Economy," Energies, MDPI, vol. 15(17), pages 1-26, August.
    9. Hosseini Dehshiri, Seyyed Jalaladdin & Amiri, Maghsoud, 2023. "Evaluating the risks of the internet of things in renewable energy systems using a hybrid fuzzy decision approach," Energy, Elsevier, vol. 285(C).
    10. Hou, Yali & Wang, Qunwei & Tan, Tao, 2023. "An ensemble learning framework for rooftop photovoltaic project site selection," Energy, Elsevier, vol. 285(C).
    11. Maximilian Gasser & Simon Pezzutto & Wolfram Sparber & Eric Wilczynski, 2022. "Public Research and Development Funding for Renewable Energy Technologies in Europe: A Cross-Country Analysis," Sustainability, MDPI, vol. 14(9), pages 1-28, May.
    12. Onuoha, Favour Chidinma & Dimnwobi, Stephen Kelechi & Okere, Kingsley Ikechukwu & Ekesiobi, Chukwunonso, 2023. "Funding the green transition: Governance quality, public debt, and renewable energy consumption in Sub-Saharan Africa," Utilities Policy, Elsevier, vol. 82(C).
    13. Naeem, Muhammad Abubakr & Appiah, Michael & Karim, Sitara & Yarovaya, Larisa, 2023. "What abates environmental efficiency in African economies? Exploring the influence of infrastructure, industrialization, and innovation," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    14. Gozgor, Giray & Paramati, Sudharshan Reddy, 2022. "Does energy diversification cause an economic slowdown? Evidence from a newly constructed energy diversification index," Energy Economics, Elsevier, vol. 109(C).
    15. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    16. Simplice A. Asongu & Joel Hinaunye Eita, 2023. "Promoting renewable energy consumption in Sub-Saharan Africa: how capital flight crowds-out the favorable effect of foreign aid," Working Papers of the African Governance and Development Institute. 23/048, African Governance and Development Institute..
    17. Hosseini Dehshiri, Seyyed Jalaladdin & Amiri, Maghsoud & Hosseini Bamakan, Seyed Mojtaba, 2024. "Evaluating the blockchain technology strategies for reducing renewable energy development risks using a novel integrated decision framework," Energy, Elsevier, vol. 289(C).
    18. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    19. Wang, Zhaohua & Pham, Thi Le Hoa & Sun, Kaining & Wang, Bo & Bui, Quocviet & Hashemizadeh, Ali, 2022. "The moderating role of financial development in the renewable energy consumption - CO2 emissions linkage: The case study of Next-11 countries," Energy, Elsevier, vol. 254(PB).
    20. Devesh Singh & Sunil Kumar Dhiman, 2023. "The linkage between carbon emissions, foreign direct investment, economic growth, and gross value added," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(1), pages 156-176, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4784-:d:1173852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.