IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4763-d1172891.html
   My bibliography  Save this article

Evaluation of the Optimal Conditions for Oxygen-Rich and Oxygen-Lean Torrefaction of Forestry Byproduct as a Fuel

Author

Listed:
  • Sun Yong Park

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 200-701, Republic of Korea)

  • Seok Jun Kim

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 200-701, Republic of Korea)

  • Kwang Cheol Oh

    (Agriculture and Life Science Research Institute, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 200-701, Republic of Korea)

  • La Hoon Cho

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 200-701, Republic of Korea)

  • Young Kwang Jeon

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 200-701, Republic of Korea)

  • Dae Hyun Kim

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 200-701, Republic of Korea
    Department of Biosystems Engineering, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 200-701, Republic of Korea)

Abstract

Wood biomass is an alternative to fossil fuels. However, biomass use has several limitations. Torrefaction, in which reduction conditions prevail to overcome these limitations, has been suggested. Here, torrefaction using different wood chips ( Liriodendron tulipifera , Populus canadensis , Pinus rigida , and Pinus koraiensis ) was conducted under oxygen-rich and oxygen-lean conditions to determine the effects of oxygen. Torrefaction was conducted at 230–310 °C for 1 h. A mass yield difference of 3.53–20.02% p (percentage point) was observed between oxygen-lean and oxygen-rich conditions. The calorific value increased by a maximum of 50.95% and 48.48% under oxygen-rich and oxygen-lean conditions, respectively. Decarbonization (DC), dehydrogenation (DH), and deoxygenation (DO) occurred in the following order because of dehydration and devolatilization during biomass torrefaction: DO > DH > DC. The calorific value of the torrefied biomass increased linearly with the extent of all three processes. The combustibility index and volatile ignitability were calculated based on proximate composition to suggest the optimal conditions for replacing anthracite and bituminous coal. This study provides suggestions for stable operation in a standard boiler design.

Suggested Citation

  • Sun Yong Park & Seok Jun Kim & Kwang Cheol Oh & La Hoon Cho & Young Kwang Jeon & Dae Hyun Kim, 2023. "Evaluation of the Optimal Conditions for Oxygen-Rich and Oxygen-Lean Torrefaction of Forestry Byproduct as a Fuel," Energies, MDPI, vol. 16(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4763-:d:1172891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4763/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin F Mann & Hongmei Chen & Elizabeth M Herndon & Rosalie K Chu & Nikola Tolic & Evan F Portier & Taniya Roy Chowdhury & Errol W Robinson & Stephen J Callister & Stan D Wullschleger & David E Gra, 2015. "Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
    2. Kim, Seok Jun & Park, Sunyong & Oh, Kwang Cheol & Ju, Young Min & Cho, La hoon & Kim, Dae Hyun, 2021. "Development of surface torrefaction process to utilize agro-byproducts as an energy source," Energy, Elsevier, vol. 233(C).
    3. Shijie Yu & Xinyue Dong & Peng Zhao & Zhicheng Luo & Zhuohua Sun & Xiaoxiao Yang & Qinghai Li & Lei Wang & Yanguo Zhang & Hui Zhou, 2022. "Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Seok-Jun Kim & Kwang-Cheol Oh & Sun-Yong Park & Young-Min Ju & La-Hoon Cho & Chung-Geon Lee & Min-Jun Kim & In-Seon Jeong & Dae-Hyun Kim, 2021. "Development and Validation of Mass Reduction Prediction Model and Analysis of Fuel Properties for Agro-Byproduct Torrefaction," Energies, MDPI, vol. 14(19), pages 1-14, September.
    5. Oh, Kwang Cheol & Park, Sun Young & Kim, Seok Jun & Choi, Yun Sung & Lee, Chung Geon & Cho, La Hoon & Kim, Dae Hyun, 2019. "Development and validation of mass reduction model to optimize torrefaction for agricultural byproduct biomass," Renewable Energy, Elsevier, vol. 139(C), pages 988-999.
    6. Johannes Lehmann, 2007. "A handful of carbon," Nature, Nature, vol. 447(7141), pages 143-144, May.
    7. Singh, Satyansh & Chakraborty, Jyoti Prasad & Mondal, Monoj Kumar, 2020. "Torrefaction of woody biomass (Acacia nilotica): Investigation of fuel and flow properties to study its suitability as a good quality solid fuel," Renewable Energy, Elsevier, vol. 153(C), pages 711-724.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adeleke, Adekunle A. & Ikubanni, Peter P. & Emmanuel, Stephen S. & Fajobi, Moses O. & Nwachukwu, Praise & Adesibikan, Ademidun A. & Odusote, Jamiu K. & Adeyemi, Emmanuel O. & Abioye, Oluwaseyi M. & Ok, 2024. "A comprehensive review on the similarity and disparity of torrefied biomass and coal properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Lin, Yi-Li & Zheng, Nai-Yun, 2021. "Torrefaction of fruit waste seed and shells for biofuel production with reduced CO2 emission," Energy, Elsevier, vol. 225(C).
    3. Kim, Seok Jun & Park, Sun Yong & Oh, Kwang Cheol & Cho, La hoon & Jeon, Young Kwang & Kim, Dae Hyun, 2023. "Improvement of fuel characteristics for forest by-products applied surface torrefaction process," Energy, Elsevier, vol. 284(C).
    4. Lychuk, Taras E. & Hill, Robert L. & Izaurralde, Roberto C. & Momen, Bahram & Thomson, Allison M., 2021. "Evaluation of climate change impacts and effectiveness of adaptation options on nitrate loss, microbial respiration, and soil organic carbon in the Southeastern USA," Agricultural Systems, Elsevier, vol. 193(C).
    5. Kanbur, Ravi & Bento, Antonio M. & Leard, Benjamin, 2012. "SUPER-ADDITIONALITY: A Neglected Force in Markets for Carbon Offsets," Working Papers 128811, Cornell University, Department of Applied Economics and Management.
    6. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    7. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    8. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    9. Zhang, Shiyu & Bie, Xuan & Qian, Zheng & Wu, Mengna & Li, Kaile & Li, Qinghai & Zhang, Yanguo & Zhou, Hui, 2024. "Synergistic interactions between cellulose and plastics (PET, HDPE, and PS) during CO2 gasification-catalytic reforming on Ni/CeO2 nanorod catalyst," Applied Energy, Elsevier, vol. 361(C).
    10. Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
    11. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    12. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    14. Devaraja, Udya Madhavi Aravindi & Senadheera, Sachini Supunsala & Gunarathne, Duleeka Sandamali, 2022. "Torrefaction severity and performance of Rubberwood and Gliricidia," Renewable Energy, Elsevier, vol. 195(C), pages 1341-1353.
    15. Jayanta Layek & Rumi Narzari & Samarendra Hazarika & Anup Das & Krishnappa Rangappa & Shidayaichenbi Devi & Arumugam Balusamy & Saurav Saha & Sandip Mandal & Ramkrushna Gandhiji Idapuganti & Subhash B, 2022. "Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    16. Zhao, Peng & Yu, Shijie & Li, Qinghai & Zhang, Yanguo & Zhou, Hui, 2024. "Understanding heavy metal in the conversion of biomass model component: Migration and transformation characteristics of Cu during hydrothermal carbonization of cellulose," Energy, Elsevier, vol. 293(C).
    17. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Syaharudin Zaibon & Mehnaz Mosharrof, 2021. "Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil," Agriculture, MDPI, vol. 11(1), pages 1-15, January.
    18. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    19. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Azharuddin Abd Aziz & Mehnaz Mosharrof, 2022. "Combined Use of Biochar with 15 Nitrogen Labelled Urea Increases Rice Yield, N Use Efficiency and Fertilizer N Recovery under Water-Saving Irrigation," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    20. Zouhair Elkhlifi & Jerosha Iftikhar & Mohammad Sarraf & Baber Ali & Muhammad Hamzah Saleem & Irshad Ibranshahib & Mozart Daltro Bispo & Lucas Meili & Sezai Ercisli & Ehlinaz Torun Kayabasi & Naser Ale, 2023. "Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4763-:d:1172891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.