IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p447-d1020748.html
   My bibliography  Save this article

A Novel Distributed Consensus-Based Approach to Solve the Economic Dispatch Problem Incorporating the Valve-Point Effect and Solar Energy Sources

Author

Listed:
  • Muhammad Moin

    (Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan)

  • Waqas Ahmed

    (Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan)

  • Muhammad Rehan

    (Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan)

  • Muhammad Iqbal

    (Department of Computer Science, National University of Technology (NUTECH), Islamabad 44000, Pakistan)

  • Nasim Ullah

    (Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Kamran Zeb

    (School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Waqar Uddin

    (Department of Electrical Engineering, National University of Technology (NUTECH), Islamabad 44000, Pakistan)

Abstract

This research focused on the design of a distributed approach using consensus theory to find an optimal solution of the economic dispatch problem (EDP) by considering the quadratic cost function along with the valve-point effect of generators and renewable energy systems (RESs). A distributed consensus approach is presented for the optimal economic dispatch under a complex valve-point effect by accounting for solar energy in addition to conventional power plants. By employing the beta distribution function and communication topology between generators, a new optimality condition for the dispatch problem was formulated. A novel distributed updation law for generation by considering the communication between generators was provided to deal with the valve-point effect. The convergence of the proposed updation law was proved analytically using Lyapunov stability and graph theory. An algorithm for ensuring a distributed economic dispatch via conventional power plants, integrated with solar energy, was addressed. To the best of the authors’ knowledge, a distributed nonlinear EDP approach for dealing with the valve-point loading issue via nonlinear incremental costs has been addressed for the first time. The designed approach was simulated for benchmark systems with and without a generation capacity constraint, and the results were compared with the existing centralized and distributed strategies.

Suggested Citation

  • Muhammad Moin & Waqas Ahmed & Muhammad Rehan & Muhammad Iqbal & Nasim Ullah & Kamran Zeb & Waqar Uddin, 2022. "A Novel Distributed Consensus-Based Approach to Solve the Economic Dispatch Problem Incorporating the Valve-Point Effect and Solar Energy Sources," Energies, MDPI, vol. 16(1), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:447-:d:1020748
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingjiang Zhou & Shigao Zhu & Qian Chen, 2020. "Distributed Prescribed Finite Time Consensus Scheme for Economic Dispatch of Smart Grids with the Valve Point Effect," Complexity, Hindawi, vol. 2020, pages 1-10, August.
    2. Kahvecioğlu, Gökçe & Morton, David P. & Wagner, Michael J., 2022. "Dispatch optimization of a concentrating solar power system under uncertain solar irradiance and energy prices," Applied Energy, Elsevier, vol. 326(C).
    3. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    2. Xie, Ying & Zhou, Ping & Yao, Zhao & Ma, Jun, 2022. "Response mechanism in a functional neuron under multiple stimuli," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Tavakolpour-Saleh, A.R., 2021. "A novel theorem on motion stability," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    4. Li, Jing & Lu, Tianguang & Yi, Xinning & Hao, Ran & Ai, Qian & Guo, Yu & An, Molin & Wang, Shaorui & He, Xueqian & Li, Yixiao, 2024. "Concentrated solar power for a reliable expansion of energy systems with high renewable penetration considering seasonal balance," Renewable Energy, Elsevier, vol. 226(C).
    5. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Ma, Xiaowen & Xu, Ying, 2022. "Taming the hybrid synapse under energy balance between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    7. Zhou, Ping & Ma, Jun & Xu, Ying, 2023. "Phase synchronization between neurons under nonlinear coupling via hybrid synapse," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Lei, Yong & Xu, Xin-Jian & Wang, Xiaofan & Zou, Yong & Kurths, Jürgen, 2023. "A new criterion for optimizing synchrony of coupled oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Abiodun, Kehinde & Hood, Karoline & Cox, John L. & Newman, Alexandra M. & Zolan, Alex J., 2023. "The value of concentrating solar power in ancillary services markets," Applied Energy, Elsevier, vol. 334(C).
    10. Njitacke, Zeric Tabekoueng & Ramakrishnan, Balamurali & Rajagopal, Karthikeyan & Fonzin Fozin, Théophile & Awrejcewicz, Jan, 2022. "Extremely rich dynamics of coupled heterogeneous neurons through a Josephson junction synapse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Hou, Yi-You & Lin, Ming-Hung & Saberi-Nik, Hassan & Arya, Yogendra, 2024. "Boundary analysis and energy feedback control of fractional-order extended Malkus–Robbins dynamo system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    12. Ma, Jun, 2024. "Energy function for some maps and nonlinear oscillators," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    13. Yuemin Zheng & Jin Tao & Qinglin Sun & Hao Sun & Zengqiang Chen & Mingwei Sun, 2023. "Adaptive Active Disturbance Rejection Load Frequency Control for Power System with Renewable Energies Using the Lyapunov Reward-Based Twin Delayed Deep Deterministic Policy Gradient Algorithm," Sustainability, MDPI, vol. 15(19), pages 1-25, October.
    14. Ijaz Ahmed & Um-E-Habiba Alvi & Abdul Basit & Tayyaba Khursheed & Alwena Alvi & Keum-Shik Hong & Muhammad Rehan, 2022. "A novel hybrid soft computing optimization framework for dynamic economic dispatch problem of complex non-convex contiguous constrained machines," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-32, January.
    15. Untrau, Alix & Sochard, Sabine & Marias, Frédéric & Reneaume, Jean-Michel & Le Roux, Galo A.C. & Serra, Sylvain, 2024. "Storage management in a rolling horizon Dynamic Real-Time Optimization (DRTO) methodology for a non-concentrating solar thermal plant for low temperature heat production," Applied Energy, Elsevier, vol. 360(C).
    16. Sun, Guoping & Yang, Feifei & Ren, Guodong & Wang, Chunni, 2023. "Energy encoding in a biophysical neuron and adaptive energy balance under field coupling," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    17. Ren, Lei & Lin, Ming-Hung & Abdulwahab, Abdulkareem & Ma, Jun & Saberi-Nik, Hassan, 2023. "Global dynamical analysis of the integer and fractional 4D hyperchaotic Rabinovich system," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    18. Gabriel J. Soto & Ben Lindley & Ty Neises & Cory Stansbury & Michael J. Wagner, 2022. "Dispatch Optimization, System Design and Cost Benefit Analysis of a Nuclear Reactor with Molten Salt Thermal Storage," Energies, MDPI, vol. 15(10), pages 1-23, May.
    19. Liu, Ping & Zhang, Yulan & Mohammed, Khidhair Jasim & Lopes, António M. & Saberi-Nik, Hassan, 2023. "The global dynamics of a new fractional-order chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:447-:d:1020748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.