IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p354-d1018079.html
   My bibliography  Save this article

Effects of Overnight Oxidation on Perovskite Solar Cells with Co(III)TFSI Co-Doped Spiro-OMeTAD

Author

Listed:
  • Laxmi Nakka

    (Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore 117574, Singapore
    Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore)

  • Armin Gerhard Aberle

    (Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore 117574, Singapore
    Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore)

  • Fen Lin

    (Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore 117574, Singapore)

Abstract

Metal-halide perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies in recent years, and spiro-OMeTAD plays a significant role as a hole transport material in PSCs with record efficiencies. However, further studies and systematic experimental procedures on doped spiro-OMeTAD are required to enable a reliable process for potential commercialization. In particular, the effect of the prolonged oxidation of Co(III)TFSI co-doped spiro-OMeTAD has been one of the unanswered topics in PSC research. In this work, we investigate the influence of overnight oxidation on the performance of PSCs with Co(III)TFSI co-doped spiro-OMeTAD. Co-doping spiro-OMeTAD with Co(III) complexes instantly oxidizes spiro-OMeTAD, leading to an improvement in power conversion efficiency (PCE) from 13.1% (LiTFSI-doped spiro-OMeTAD) to 17.6% (LiTFSI + Co(III)TFSI-doped spiro-OMeTAD). It is found that PSCs with spiro-OMeTAD co-doped with Co(III)TFSI without overnight oxidation could retain around 90% of the efficiency under maximum power point tracking at 1-sun illumination for 3000 min, whereas the efficiencies drop by more than 30% when Co(III)TFSI co-doped spiro-OMeTAD is exposed to overnight oxidation. Hence, it is important to inhibit the unnecessary overnight oxidation of Co(III)TFSI co-doped spiro-OMeTAD so as to save excess fabrication time and overcome the poor stability issues.

Suggested Citation

  • Laxmi Nakka & Armin Gerhard Aberle & Fen Lin, 2022. "Effects of Overnight Oxidation on Perovskite Solar Cells with Co(III)TFSI Co-Doped Spiro-OMeTAD," Energies, MDPI, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:354-:d:1018079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nam Joong Jeon & Hyejin Na & Eui Hyuk Jung & Tae-Youl Yang & Yong Guk Lee & Geunjin Kim & Hee-Won Shin & Sang Seok & Jaemin Lee & Jangwon Seo, 2018. "A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells," Nature Energy, Nature, vol. 3(8), pages 682-689, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Issa M.Aziz, 2023. "A review of thin film solar cell," Technium, Technium Science, vol. 10(1), pages 6-13.
    2. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.
    3. Sara Jalali & Eleonora Nicoletti & Lidia Badarnah, 2024. "From Flora to Solar Adaptive Facades: Integrating Plant-Inspired Design with Photovoltaic Technologies," Sustainability, MDPI, vol. 16(3), pages 1-18, January.
    4. Jiyeon Hyun & Kyung Mun Yeom & Ha Eun Lee & Donghwan Kim & Hae-Seok Lee & Jun Hong Noh & Yoonmook Kang, 2021. "Efficient n-i-p Monolithic Perovskite/Silicon Tandem Solar Cells with Tin Oxide via a Chemical Bath Deposition Method," Energies, MDPI, vol. 14(22), pages 1-10, November.
    5. Cuili Gai & Jigang Wang & Yongsheng Wang & Junming Li, 2019. "The Low-Dimensional Three-Dimensional Tin Halide Perovskite: Film Characterization and Device Performance," Energies, MDPI, vol. 13(1), pages 1-26, December.
    6. Soonil Hong & Jinho Lee, 2022. "Recent Advances and Challenges toward Efficient Perovskite/Organic Integrated Solar Cells," Energies, MDPI, vol. 16(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:354-:d:1018079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.