IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p325-d1017505.html
   My bibliography  Save this article

Techno-Economic Analysis towards Full-Scale Pressure Retarded Osmosis Plants

Author

Listed:
  • Elizabeth I. Obode

    (Chemical Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 23874, Qatar)

  • Ahmed Badreldin

    (Chemical Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 23874, Qatar)

  • Samer Adham

    (ConocoPhillips Global Water Sustainability Center, Qatar Science & Technology Park, Doha P.O. Box 24750, Qatar)

  • Marcelo Castier

    (Chemical Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 23874, Qatar
    Facultad de Ciencias de la Ingeniería, Universidad Paraguayo Alemana, San Lorenzo 2540, Paraguay)

  • Ahmed Abdel-Wahab

    (Chemical Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 23874, Qatar)

Abstract

Pressure retarded osmosis (PRO) is a power generation process that harnesses the salinity gradient between two water bodies of different salinities. Using high salinity water as a draw solution, this work assesses the techno-economic feasibility of the technology to generate electricity using single and multistage systems. This work utilizes a simulator built on the rigorous Q-Electrolattice equation of state and a mass transfer model that accounts for concentration polarization, combined with the Dakota optimization tool to perform sensitivity analysis and optimization studies. The economic indicator of interest is the Levelized Cost of Electricity (LCOE), which serves to compare PRO with other sources of renewable energy. An LCOE value of USD 0.1255/kWh was obtained from the use of commercial membranes at an efficiency of 100% for the mechanical components of the PRO system. This LCOE drops to USD 0.0704/kWh when an ideal membrane is used—thus showing the improvements to economics possible with improved membrane properties. With currently obtainable membrane properties and mechanical equipment, the LCOE of a single-stage process increases to USD 0.352/kWh, which is not cost-competitive with other renewable energy sources. Setting up multistage PRO systems towards minimizing the LCOE was found to be detrimental to the net power production by the plant.

Suggested Citation

  • Elizabeth I. Obode & Ahmed Badreldin & Samer Adham & Marcelo Castier & Ahmed Abdel-Wahab, 2022. "Techno-Economic Analysis towards Full-Scale Pressure Retarded Osmosis Plants," Energies, MDPI, vol. 16(1), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:325-:d:1017505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/325/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/325/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matta, Saly M. & Selam, Muaz A. & Manzoor, Husnain & Adham, Samer & Shon, Ho Kyong & Castier, Marcelo & Abdel-Wahab, Ahmed, 2022. "Predicting the performance of spiral-wound membranes in pressure-retarded osmosis processes," Renewable Energy, Elsevier, vol. 189(C), pages 66-77.
    2. Tufa, Ramato Ashu & Pawlowski, Sylwin & Veerman, Joost & Bouzek, Karel & Fontananova, Enrica & di Profio, Gianluca & Velizarov, Svetlozar & Goulão Crespo, João & Nijmeijer, Kitty & Curcio, Efrem, 2018. "Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage," Applied Energy, Elsevier, vol. 225(C), pages 290-331.
    3. Qais A. Khasawneh & Bourhan Tashtoush & Anas Nawafleh & Bayan Kan’an, 2018. "Techno-Economic Feasibility Study of a Hypersaline Pressure-Retarded Osmosis Power Plants: Dead Sea–Red Sea Conveyor," Energies, MDPI, vol. 11(11), pages 1-17, November.
    4. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    5. Sung Ho Chae & Young Mi Kim & Hosik Park & Jangwon Seo & Seung Ji Lim & Joon Ha Kim, 2019. "Modeling and Simulation Studies Analyzing the Pressure-Retarded Osmosis (PRO) and PRO-Hybridized Processes," Energies, MDPI, vol. 12(2), pages 1-38, January.
    6. Manzoor, Husnain & Selam, Muaz A. & Abdur Rahman, Fahim Bin & Adham, Samer & Castier, Marcelo & Abdel-Wahab, Ahmed, 2020. "A tool for assessing the scalability of pressure-retarded osmosis (PRO) membranes," Renewable Energy, Elsevier, vol. 149(C), pages 987-999.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz-García, A. & Tadeo, F. & Nuez, I., 2023. "Role of permeability coefficients in salinity gradient energy generation by PRO systems with spiral wound membrane modules," Renewable Energy, Elsevier, vol. 215(C).
    2. Abdelkader, Bassel A. & Navas, Daniel Ruiz & Sharqawy, Mostafa H., 2023. "A novel spiral wound module design for harvesting salinity gradient energy using pressure retarded osmosis," Renewable Energy, Elsevier, vol. 203(C), pages 542-553.
    3. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    4. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    5. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    6. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    7. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    8. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    10. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    11. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    12. Ewa C. E. Rönnebro & Greg Whyatt & Michael Powell & Matthew Westman & Feng (Richard) Zheng & Zhigang Zak Fang, 2015. "Metal Hydrides for High-Temperature Power Generation," Energies, MDPI, vol. 8(8), pages 1-25, August.
    13. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    14. Chang, Chih-Chang & Huang, Wei-Hao & Mai, Van-Phung & Tsai, Jia-Shiuan & Yang, Ruey-Jen, 2021. "Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide," Energy, Elsevier, vol. 229(C).
    15. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    16. Wang, Jiayu, 2016. "Do light vehicle emissions standards promote environmental goals in Australia?," Conference papers 332692, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    18. Ondraczek, Janosch, 2014. "Are we there yet? Improving solar PV economics and power planning in developing countries: The case of Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 604-615.
    19. Caspeta, Luis & Caro-Bermúdez, Mario A. & Ponce-Noyola, Teresa & Martinez, Alfredo, 2014. "Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol," Applied Energy, Elsevier, vol. 113(C), pages 277-286.
    20. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:325-:d:1017505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.