IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p275-d1016191.html
   My bibliography  Save this article

Machine Learning-Enhanced Radio Tomographic Device for Energy Optimization in Smart Buildings

Author

Listed:
  • Michał Styła

    (Research and Development Center of Information Technologies (CBRTI), 35-326 Rzeszów, Poland)

  • Bartłomiej Kiczek

    (Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland)

  • Grzegorz Kłosowski

    (Faculty of Management, Lublin University of Technology, 20-502 Lublin, Poland)

  • Tomasz Rymarczyk

    (Faculty of Transport and Computer Science, WSEI University, 20-209 Lublin, Poland)

  • Przemysław Adamkiewicz

    (Research and Development Center of Information Technologies (CBRTI), 35-326 Rzeszów, Poland
    Faculty of Transport and Computer Science, WSEI University, 20-209 Lublin, Poland)

  • Dariusz Wójcik

    (Faculty of Transport and Computer Science, WSEI University, 20-209 Lublin, Poland)

  • Tomasz Cieplak

    (Faculty of Management, Lublin University of Technology, 20-502 Lublin, Poland)

Abstract

Smart buildings are becoming a new standard in construction, which allows for many possibilities to introduce ergonomics and energy savings. These contain simple improvements, such as controlling lights and optimizing heating or air conditioning systems in the building, but also more complex ones, such as indoor movement tracking of building users. One of the necessary components is an indoor localization system, especially without any device worn by the person being located. These types of solutions are important in locating people inside smart buildings, managing hospitals of the future and other similar institutions. The article presents a prototype of an innovative energy-efficient device for radio tomography, in which the hardware and software layers of the solution are presented. The presented example consists of 32 radio sensors based on a Bluetooth 5 protocol controlled by a central unit. The preciseness of the system was verified both visually and quantitatively by the image reconstruction as a result of solving the inverse tomographic problem using three neural networks.

Suggested Citation

  • Michał Styła & Bartłomiej Kiczek & Grzegorz Kłosowski & Tomasz Rymarczyk & Przemysław Adamkiewicz & Dariusz Wójcik & Tomasz Cieplak, 2022. "Machine Learning-Enhanced Radio Tomographic Device for Energy Optimization in Smart Buildings," Energies, MDPI, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:275-:d:1016191
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomasz Rymarczyk & Konrad Niderla & Edward Kozłowski & Krzysztof Król & Joanna Maria Wyrwisz & Sylwia Skrzypek-Ahmed & Piotr Gołąbek, 2021. "Logistic Regression with Wave Preprocessing to Solve Inverse Problem in Industrial Tomography for Technological Process Control," Energies, MDPI, vol. 14(23), pages 1-21, December.
    2. Konrad Kania & Tomasz Rymarczyk & Mariusz Mazurek & Sylwia Skrzypek-Ahmed & Mirosław Guzik & Piotr Oleszczuk, 2021. "Optimisation of Technological Processes by Solving Inverse Problem through Block-Wise-Transform-Reduction Method Using Open Architecture Sensor Platform," Energies, MDPI, vol. 14(24), pages 1-21, December.
    3. Tomasz Rymarczyk & Grzegorz Kłosowski & Anna Hoła & Jerzy Hoła & Jan Sikora & Paweł Tchórzewski & Łukasz Skowron, 2021. "Historical Buildings Dampness Analysis Using Electrical Tomography and Machine Learning Algorithms," Energies, MDPI, vol. 14(5), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Liu & Jiayuan Yu & Yuanjin Zheng & Chao Liu & Yanxiong Yang & Yunfei Qi, 2022. "A Nonlinear Multigrid Method for the Parameter Identification Problem of Partial Differential Equations with Constraints," Mathematics, MDPI, vol. 10(16), pages 1-12, August.
    2. Jan Porzuczek, 2021. "Multifrequency Impedance Tomography System for Research on Environmental and Thermal Processes," Energies, MDPI, vol. 14(19), pages 1-17, October.
    3. Grzegorz Kłosowski & Anna Hoła & Tomasz Rymarczyk & Mariusz Mazurek & Konrad Niderla & Magdalena Rzemieniak, 2023. "Using Machine Learning in Electrical Tomography for Building Energy Efficiency through Moisture Detection," Energies, MDPI, vol. 16(4), pages 1-31, February.
    4. Grzegorz Kłosowski & Anna Hoła & Tomasz Rymarczyk & Łukasz Skowron & Tomasz Wołowiec & Marcin Kowalski, 2021. "The Concept of Using LSTM to Detect Moisture in Brick Walls by Means of Electrical Impedance Tomography," Energies, MDPI, vol. 14(22), pages 1-20, November.
    5. Piotr Łapka & Łukasz Cieślikiewicz, 2021. "Efficiency Comparison between Two Masonry Wall Drying Devices Using In Situ Data Measurements," Energies, MDPI, vol. 14(21), pages 1-14, November.
    6. Tomasz Rymarczyk & Grzegorz Kłosowski & Anna Hoła & Jan Sikora & Tomasz Wołowiec & Paweł Tchórzewski & Stanisław Skowron, 2021. "Comparison of Machine Learning Methods in Electrical Tomography for Detecting Moisture in Building Walls," Energies, MDPI, vol. 14(10), pages 1-22, May.
    7. Bartosz Przysucha & Dariusz Wójcik & Tomasz Rymarczyk & Krzysztof Król & Edward Kozłowski & Marcin Gąsior, 2023. "Analysis of Reconstruction Energy Efficiency in EIT and ECT 3D Tomography Based on Elastic Net," Energies, MDPI, vol. 16(3), pages 1-22, February.
    8. Nikolaos M. Manousakis, 2022. "Advanced Electrical Measurements Technologies," Energies, MDPI, vol. 15(9), pages 1-6, April.
    9. Dariusz Wójcik & Tomasz Rymarczyk & Bartosz Przysucha & Michał Gołąbek & Dariusz Majerek & Tomasz Warowny & Manuchehr Soleimani, 2023. "Energy Reduction with Super-Resolution Convolutional Neural Network for Ultrasound Tomography," Energies, MDPI, vol. 16(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:275-:d:1016191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.