IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p210-d1014324.html
   My bibliography  Save this article

Detection and Diagnosis of Multiple-Dependent Faults (MDFDD) of Water-Cooled Centrifugal Chillers Using Grey-Box Model-Based Method

Author

Listed:
  • Hongwen Dou

    (Department of Civil, Building, and Environmental Engineering, Centre for Zero Energy Building Studies, Concordia University, Montreal, QC H3G 1M8, Canada)

  • Radu Zmeureanu

    (Department of Civil, Building, and Environmental Engineering, Centre for Zero Energy Building Studies, Concordia University, Montreal, QC H3G 1M8, Canada)

Abstract

This paper presents the development and use of benchmarking grey-box models for the detection and diagnosis of multiple-dependent faults (MDFDD) of a water-cooled centrifugal chiller. Models are developed using data recorded by a Building Automation System (BAS) from a central cooling plant of an institutional building. The forward residual-based fault detection model identifies a fault symptom, when the difference between the measured value of target variable and benchmarking value exceeds the corresponding threshold. For the fault diagnosis, most publications start from a known single fault and establish the impact on following variables in the system. This paper presents a rule-based backward approach. The proposed method identifies if (i) the fault symptom is correct (i.e., a variable has abnormal values), or (ii) the fault symptom is incorrect (i.e., the symptom of target variable is caused by impacts generated by other faulty variables due to the dependency between variables), or (iii) both target and regressor variables are abnormal. For testing the proposed MDFDD model, some artificial faults are inserted into the measurement data file, and results are discussed about the method potential for the application.

Suggested Citation

  • Hongwen Dou & Radu Zmeureanu, 2022. "Detection and Diagnosis of Multiple-Dependent Faults (MDFDD) of Water-Cooled Centrifugal Chillers Using Grey-Box Model-Based Method," Energies, MDPI, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:210-:d:1014324
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Monfet, Danielle & Zmeureanu, Radu, 2012. "Ongoing commissioning of water-cooled electric chillers using benchmarking models," Applied Energy, Elsevier, vol. 92(C), pages 99-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ssembatya, Martin & Claridge, David E., 2024. "Quantitative fault detection and diagnosis methods for vapour compression chillers: Exploring the potential for field-implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    2. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    3. Behrad Bezyan & Radu Zmeureanu, 2020. "Machine Learning for Benchmarking Models of Heating Energy Demand of Houses in Northern Canada," Energies, MDPI, vol. 13(5), pages 1-20, March.
    4. Ahn, Jonghoon & Cho, Soolyeon, 2017. "Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments," Applied Energy, Elsevier, vol. 204(C), pages 117-130.
    5. Fan, Cheng & Sun, Yongjun & Shan, Kui & Xiao, Fu & Wang, Jiayuan, 2018. "Discovering gradual patterns in building operations for improving building energy efficiency," Applied Energy, Elsevier, vol. 224(C), pages 116-123.
    6. Tipole, Pralhad & Karthikeyan, A. & Bhojwani, Virendra & Patil, Abhay & Oak, Ninad & Ponatil, Amal & Nagori, Palash, 2016. "Applying a magnetic field on liquid line of vapour compression system is a novel technique to increase a performance of the system," Applied Energy, Elsevier, vol. 182(C), pages 376-382.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:210-:d:1014324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.