IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3444-d811260.html
   My bibliography  Save this article

Numerical Study on the Long-Term Performance and Load Imbalance Ratio for Medium-Shallow Borehole Heat Exchanger System

Author

Listed:
  • Ruifeng Wang

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Fenghao Wang

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yuze Xue

    (Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China)

  • Jinghua Jiang

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yuping Zhang

    (Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China)

  • Wanlong Cai

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Chaofan Chen

    (Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany)

Abstract

To contribute to the goal of carbon neutralization, the closed-loop borehole heat exchanger system is widely applied to use geothermal energy for building cooling and heating. In this work, a new type of medium-shallow borehole heat exchanger (MSBHE) is proposed, which is coaxial type and has a depth range between 200 m to 500 m. To investigate the long-term performance of MSBHE in the area with unbalanced cooling and heating load of buildings and the sustainable load imbalance ratio under different design parameters, a comprehensive numerical model is established. The results show that the drilling depth significantly influences the sustainable load imbalance ratio of MSBHE. As the drilling depth is increased from 200 m to 500 m, the load imbalance ratio of the MSBHE increases from 20.76% to 60.29%. In contrast, the load imbalance ratio is always kept at the same level with different inlet velocities and operation modes. Furthermore, in a 9-MSBHE array system, the heat exchanger located in the middle of the array has the lowest load imbalance ratio of 48.97%, which is 15.98% lower than the borehole in the edge location. This is caused by the significant influence of the shifted-load phenomenon among MSBHEs in an array system. The findings of the work imply that this newly proposed MSBHE can sustain a notable load imbalance ratio, which is particularly applicable to the areas with a strong imbalance of annual building load.

Suggested Citation

  • Ruifeng Wang & Fenghao Wang & Yuze Xue & Jinghua Jiang & Yuping Zhang & Wanlong Cai & Chaofan Chen, 2022. "Numerical Study on the Long-Term Performance and Load Imbalance Ratio for Medium-Shallow Borehole Heat Exchanger System," Energies, MDPI, vol. 15(9), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3444-:d:811260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3444/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3444/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Xin-gang & Wan, Guan, 2014. "Current situation and prospect of China׳s geothermal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 651-661.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brown, Christopher S. & Kolo, Isa & Falcone, Gioia & Banks, David, 2023. "Investigating scalability of deep borehole heat exchangers: Numerical modelling of arrays with varied modes of operation," Renewable Energy, Elsevier, vol. 202(C), pages 442-452.
    2. R.V., Rohit & R., Vipin Raj & Kiplangat, Dennis C. & R., Veena & Jose, Rajan & Pradeepkumar, A.P. & Kumar, K. Satheesh, 2023. "Tracing the evolution and charting the future of geothermal energy research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Meng, Nan & Li, Tailu & Wang, Jianqiang & Jia, Yanan & Liu, Qinghua & Qin, Haosen, 2020. "Synergetic mechanism of fracture properties and system configuration on techno-economic performance of enhanced geothermal system for power generation during life cycle," Renewable Energy, Elsevier, vol. 152(C), pages 910-924.
    3. Rivera Diaz, Alexandre & Kaya, Eylem & Zarrouk, Sadiq J., 2016. "Reinjection in geothermal fields − A worldwide review update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 105-162.
    4. Li, Yanbin & Li, Yun & Wang, Bingqian & Chen, Zhuoer & Nie, Dan, 2016. "The status quo review and suggested policies for shale gas development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 420-428.
    5. Hou, Jianchao & Cao, Mengchao & Liu, Pingkuo, 2018. "Development and utilization of geothermal energy in China: Current practices and future strategies," Renewable Energy, Elsevier, vol. 125(C), pages 401-412.
    6. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    7. Jiansheng, Wang & Lide, Su & Qiang, Zhu & Jintao, Niu, 2022. "Numerical investigation on power generation performance of enhanced geothermal system with horizontal well," Applied Energy, Elsevier, vol. 325(C).
    8. Tóth, György & Rman, Nina & Ágnes, Rotár-Szalkai & Kerékgyártó, Tamás & Szőcs, Teodóra & Lapanje, Andrej & Černák, Radovan & Remsík, Anton & Schubert, Gerhard & Nádor, Annamária, 2016. "Transboundary fresh and thermal groundwater flows in the west part of the Pannonian Basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 439-454.
    9. Huang, Xiaoxue & Zhu, Jialing & Niu, Chengke & Li, Jun & Hu, Xia & Jin, Xianpeng, 2014. "Heat extraction and power production forecast of a prospective Enhanced Geothermal System site in Songliao Basin, China," Energy, Elsevier, vol. 75(C), pages 360-370.
    10. Luo, Jin & Luo, Zequan & Xie, Jihai & Xia, Dongsheng & Huang, Wei & Shao, Haibin & Xiang, Wei & Rohn, Joachim, 2018. "Investigation of shallow geothermal potentials for different types of ground source heat pump systems (GSHP) of Wuhan city in China," Renewable Energy, Elsevier, vol. 118(C), pages 230-244.
    11. Zhang, Yanjun & Ma, Yueqiang & Hu, Zhongjun & Lei, Honglei & Bai, Lin & Lei, Zhihong & Zhang, Qian, 2019. "An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite," Renewable Energy, Elsevier, vol. 140(C), pages 615-624.
    12. Zhang, Chao & Jiang, Guangzheng & Jia, Xiaofeng & Li, Shengtao & Zhang, Shengsheng & Hu, Di & Hu, Shengbiao & Wang, Yibo, 2019. "Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau," Renewable Energy, Elsevier, vol. 132(C), pages 959-978.
    13. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    14. Wang, Guiling & Wang, Wanli & Luo, Jin & Zhang, Yuhao, 2019. "Assessment of three types of shallow geothermal resources and ground-source heat-pump applications in provincial capitals in the Yangtze River Basin, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 392-421.
    15. Liu, Jian & Cheng, Wen-Long & Nian, Yong-Le, 2018. "The stratigraphic and operating parameters influence on economic analysis for enhanced geothermal double wells utilization system," Energy, Elsevier, vol. 159(C), pages 264-276.
    16. Liang, Xu & Xu, Tianfu & Feng, Bo & Jiang, Zhenjiao, 2018. "Optimization of heat extraction strategies in fault-controlled hydro-geothermal reservoirs," Energy, Elsevier, vol. 164(C), pages 853-870.
    17. Wang, Yanyong & Wang, Xiaoguang & Xu, Huyang & Wang, Yanqing & Jiang, Chuanyin, 2022. "Numerical investigation of the influences of geological controlling factors on heat extraction from hydrothermal reservoirs by CO2 recycling," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3444-:d:811260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.