IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3300-d806828.html
   My bibliography  Save this article

A Fuzzy-Genetic-Based Integration of Renewable Energy Sources and E-Vehicles

Author

Listed:
  • Himanshi Agrawal

    (Department of Electrical Engineering, JECRC University, Rajasthan 303905, India)

  • Akash Talwariya

    (Department of Electrical Engineering, JECRC University, Rajasthan 303905, India)

  • Amandeep Gill

    (Department of Electrical Engineering, Chandigarh University, Punjab 140413, India)

  • Aman Singh

    (Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain
    Faculty of Engineering, Universidade Internacional do Cuanza, Estrada Nacional 250, Bairro Kaluapanda, Cuito EN 250, Bié, Angola)

  • Hashem Alyami

    (Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Wael Alosaimi

    (Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Arturo Ortega-Mansilla

    (Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain
    Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico)

Abstract

E-Vehicles are used for transportation and, with a vehicle-to-grid optimization approach, they may be used for supplying a backup source of energy for renewable energy sources. Renewable energy sources are integrated to maintain the demand of consumers, mitigate the active and reactive power losses, and maintain the voltage profile. Renewable energy sources are not supplied all day and, to meet the peak demand, extra electricity may be supplied through e-Vehicles. E-Vehicles with random integration may cause system unbalancing problems and need a solution. The objective of this paper is to integrate e-Vehicles with the grid as a backup source of energy through the grid-to-vehicle optimization approach by reducing active and reactive power losses and maintaining voltage profile. In this paper, three case studies are discussed: (i) integration of renewable energy sources alone; (ii) integration of e-Vehicles alone; (iii) integration of renewable energy sources and e-Vehicles in hybrid mode. The simulation results show the effectiveness of the integration and the active and reactive power losses are minimum when we used the third case.

Suggested Citation

  • Himanshi Agrawal & Akash Talwariya & Amandeep Gill & Aman Singh & Hashem Alyami & Wael Alosaimi & Arturo Ortega-Mansilla, 2022. "A Fuzzy-Genetic-Based Integration of Renewable Energy Sources and E-Vehicles," Energies, MDPI, vol. 15(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3300-:d:806828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3300/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
    2. Huang, Bing & Meijssen, Aart Gerard & Annema, Jan Anne & Lukszo, Zofia, 2021. "Are electric vehicle drivers willing to participate in vehicle-to-grid contracts? A context-dependent stated choice experiment," Energy Policy, Elsevier, vol. 156(C).
    3. Wan, Shuaibin & Liang, Xiongwei & Jiang, Haoran & Sun, Jing & Djilali, Ned & Zhao, Tianshou, 2021. "A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries," Applied Energy, Elsevier, vol. 298(C).
    4. Burger, Scott P. & Luke, Max, 2017. "Business models for distributed energy resources: A review and empirical analysis," Energy Policy, Elsevier, vol. 109(C), pages 230-248.
    5. He, Wei & Tao, Li & Han, Lei & Sun, Yasong & Campana, Pietro Elia & Yan, Jinyue, 2021. "Optimal analysis of a hybrid renewable power system for a remote island," Renewable Energy, Elsevier, vol. 179(C), pages 96-104.
    6. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karlson Hargroves & Benjamin James & Joshua Lane & Peter Newman, 2023. "The Role of Distributed Energy Resources and Associated Business Models in the Decentralised Energy Transition: A Review," Energies, MDPI, vol. 16(10), pages 1-15, May.
    2. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "A case study on the behaviour of residential battery energy storage systems during network demand peaks," Renewable Energy, Elsevier, vol. 180(C), pages 712-724.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.
    5. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    6. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    8. Rishabh Ghotge & Koen Philippe Nijssen & Jan Anne Annema & Zofia Lukszo, 2022. "Use before You Choose: What Do EV Drivers Think about V2G after Experiencing It?," Energies, MDPI, vol. 15(13), pages 1-22, July.
    9. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Dapeng Chen & Zhaoxia Jing & Huijuan Tan, 2019. "Optimal Bidding/Offering Strategy for EV Aggregators under a Novel Business Model," Energies, MDPI, vol. 12(7), pages 1-19, April.
    11. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    12. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    13. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    14. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    15. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    16. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Franck Le Gall & Ehsan Sedgh Gooya, 2022. "Home Energy Management Considering Renewable Resources, Energy Storage, and an Electric Vehicle as a Backup," Energies, MDPI, vol. 15(8), pages 1-20, April.
    17. Li Peng & Hongjun Wu & Qianjun Mao, 2022. "Visualizing Experimental Study of the Effect of Inclination Angle on the Melting Performance for an Energy Storage Tank," Energies, MDPI, vol. 15(19), pages 1-11, October.
    18. Ribó-Pérez, David & Heleno, Miguel & Álvarez-Bel, Carlos, 2021. "The flexibility gap: Socioeconomic and geographical factors driving residential flexibility," Energy Policy, Elsevier, vol. 153(C).
    19. Moritz Ehrtmann & Lars Holstenkamp & Timon Becker, 2021. "Regional Electricity Models for Community Energy in Germany: The Role of Governance Structures," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    20. Bankel, Amanda & Mignon, Ingrid, 2022. "Solar business models from a firm perspective – an empirical study of the Swedish market," Energy Policy, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3300-:d:806828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.