IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3266-d805824.html
   My bibliography  Save this article

Mathematical Modeling of Transient Processes in the Susceptible Motion Transmission in a Ship Propulsion System Containing a Shaft Synchronous Generator

Author

Listed:
  • Andriy Chaban

    (Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 79013 Lviv, Ukraine
    Department of Electrical Systems, Lviv National Agrarian University, 80381 Dubliany, Ukraine)

  • Tomasz Perzyński

    (Faculty of Transport, Electrical Engineering and Computer Science, University of Technology and Humanities, 26-600 Radom, Poland)

  • Andrzej Popenda

    (Faculty of Electrical Engineering, Czestochowa University of Technology, 42-201 Czestochowa, Poland)

  • Radosław Figura

    (Faculty of Transport, Electrical Engineering and Computer Science, University of Technology and Humanities, 26-600 Radom, Poland)

  • Vitaliy Levoniuk

    (Department of Electrical Systems, Lviv National Agrarian University, 80381 Dubliany, Ukraine)

Abstract

Within the scope of the presented work, a mathematical model of a prototype of a complex motion transmission on a ship was developed. The abovementioned motion transmission includes long elastic elements with distributed mechanical parameters. The system, containing the motion transmission under consideration, is driven by an engine via epicyclic gearing. The torque is transmitted via a long drive shaft to a propeller working with a variable blade geometry. The rotor of a synchronous generator is mounted on the ship’s long drive shaft. This shaft generator produces electricity that is fed to the ship’s electrical network. With the use of the developed mathematical model, electromechanical transients occurring during the transmission of mechanical power are analyzed. This paper analyzes the motion transmission with the use of computer simulation and presents the results of research.

Suggested Citation

  • Andriy Chaban & Tomasz Perzyński & Andrzej Popenda & Radosław Figura & Vitaliy Levoniuk, 2022. "Mathematical Modeling of Transient Processes in the Susceptible Motion Transmission in a Ship Propulsion System Containing a Shaft Synchronous Generator," Energies, MDPI, vol. 15(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3266-:d:805824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrzej Popenda & Andrzej Szafraniec & Andriy Chaban, 2021. "Dynamics of Electromechanical Systems Containing Long Elastic Couplings and Safety of Their Operation," Energies, MDPI, vol. 14(23), pages 1-18, November.
    2. Andriy Chaban & Zbigniew Łukasik & Andrzej Popenda & Andrzej Szafraniec, 2021. "Mathematical Modelling of Transient Processes in an Asynchronous Drive with a Long Shaft Including Cardan Joints," Energies, MDPI, vol. 14(18), pages 1-17, September.
    3. Andriy Chaban & Marek Lis & Andrzej Szafraniec, 2022. "Voltage Stabilisation of a Drive System Including a Power Transformer and Asynchronous and Synchronous Motors of Susceptible Motion Transmission," Energies, MDPI, vol. 15(3), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Popenda & Andrzej Szafraniec & Andriy Chaban, 2021. "Dynamics of Electromechanical Systems Containing Long Elastic Couplings and Safety of Their Operation," Energies, MDPI, vol. 14(23), pages 1-18, November.
    2. Stelian Alaci & Ioan Doroftei & Florina-Carmen Ciornei & Ionut-Cristian Romanu & Ioan Alexandru Doroftei, 2022. "The Kinematics of a Bipod R2RR Coupling between Two Non-Coplanar Shafts," Mathematics, MDPI, vol. 10(16), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3266-:d:805824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.