IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3065-d799596.html
   My bibliography  Save this article

Vapour Sorption on Coal: Influence of Polarity and Rank

Author

Listed:
  • Katarzyna Czerw

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland)

  • Andrzej Krzyżanowski

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland)

  • Paweł Baran

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland)

  • Katarzyna Zarębska

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland)

Abstract

The surface properties of coal, interactions with gaseous and vapour media, and knowledge of the pore structure are important in terms of preparation, use, and utilisation of coal. This publication combines new unpublished data with analyses included in earlier publications by the research team to expand and systematise information on the sorption of water vapour, methanol vapour, and the saturated and unsaturated hydrocarbons hexane, 1-hexene, heptane, 1-heptene, octane on coals of different ranks. The study showed that the affinity of coal for water and methanol is related to the content of oxygen in the coal rather than the rank of the coal. Water sorption is a multilayer phenomenon, while methanol sorption is a monolayer phenomenon. The water monolayer is greater than that of methanol for low-rank coal, but for the higher-rank coals it is the opposite. The sorption capacity of the applied hydrocarbons depends on the presence or absence of a double bond and the size of the molecule. It increases in the order: n-octane < n-heptane/n-hexane < 1-heptene < 1-hexene. The effect of a double bond is dominant over the influence of the length and shape of the molecule.

Suggested Citation

  • Katarzyna Czerw & Andrzej Krzyżanowski & Paweł Baran & Katarzyna Zarębska, 2022. "Vapour Sorption on Coal: Influence of Polarity and Rank," Energies, MDPI, vol. 15(9), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3065-:d:799596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agnieszka Dudzińska & Natalia Howaniec & Adam Smoliński, 2017. "Effect of Coal Grain Size on Sorption Capacity with Respect to Propylene and Acetylene," Energies, MDPI, vol. 10(11), pages 1-10, November.
    2. Zhenjian Liu & Zhenyu Zhang & Sing Ki Choi & Yiyu Lu, 2018. "Surface Properties and Pore Structure of Anthracite, Bituminous Coal and Lignite," Energies, MDPI, vol. 11(6), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Kowalska & Ewelina Brodawka & Adam Smoliński & Katarzyna Zarębska, 2022. "The European Education Initiative as a Mitigation Mechanism for Energy Transition," Energies, MDPI, vol. 15(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenjian Liu & Zhenyu Zhang & Sing Ki Choi & Yiyu Lu, 2018. "Surface Properties and Pore Structure of Anthracite, Bituminous Coal and Lignite," Energies, MDPI, vol. 11(6), pages 1-14, June.
    2. Jarosław Chećko & Natalia Howaniec & Krzysztof Paradowski & Adam Smolinski, 2021. "Gas Migration in the Aspect of Safety in the Areas of Mines Selected for Closure," Resources, MDPI, vol. 10(7), pages 1-12, July.
    3. Zhenjian Liu & Zhenyu Zhang & Xiaoqian Liu & Tengfei Wu & Xidong Du, 2019. "Supercritical CO 2 Exposure-Induced Surface Property, Pore Structure, and Adsorption Capacity Alterations in Various Rank Coals," Energies, MDPI, vol. 12(17), pages 1-14, August.
    4. Li Zhao & Yang-wen Wu & Jian Han & Han-xiao Wang & Ding-jia Liu & Qiang Lu & Yong-ping Yang, 2018. "Density Functional Theory Study on Mechanism of Mercury Removal by CeO 2 Modified Activated Carbon," Energies, MDPI, vol. 11(11), pages 1-13, October.
    5. Paweł Baran & Katarzyna Czerw & Bogdan Samojeden & Natalia Czuma & Katarzyna Zarębska, 2018. "The Influence of Temperature on the Expansion of a Hard Coal-Gas System," Energies, MDPI, vol. 11(10), pages 1-10, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3065-:d:799596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.