IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1919-d119710.html
   My bibliography  Save this article

Effect of Coal Grain Size on Sorption Capacity with Respect to Propylene and Acetylene

Author

Listed:
  • Agnieszka Dudzińska

    (Central Mining Institute, Department of Mining Aerology, Pl. Gwarków 1, 40-166 Katowice, Poland)

  • Natalia Howaniec

    (Central Mining Institute, Department of Energy Saving and Air Protection, Pl. Gwarków 1, 40-166 Katowice, Poland)

  • Adam Smoliński

    (Central Mining Institute, Department of Energy Saving and Air Protection, Pl. Gwarków 1, 40-166 Katowice, Poland)

Abstract

Propylene and acetylene are released to mine air with the increase in the temperature of self-heating coal. Concentrations of these gases in mine air are applied as indicators of the progress of the self-heating process. Hydrocarbons emitted from the self-ignition center are sorbed on coal, while migrating through the mine workings. Coal crushed during the mining process is characterized by a high sorption capacity, which facilitates the sorption phenomena. This results in the decrease in hydrocarbons content in mine air, and in the subsequent incorrect assessment of the development of the self-heating process. The results of the experimental study on propylene and acetylene sorption on Polish coals acquired from operating coal mines are presented in this paper. Bituminous coal is characterized by a high sorption capacity with respect to unsaturated hydrocarbons, like propylene and acetylene. The sorbed volumes depend on the grade of metamorphism, porosity, and chemical characteristics of coal. Low level of metamorphism, increased porosity, and oxygen content result in higher sorption capacity of coals. The reduction in grain size of coals also results in the increased sorption capacity with respect to hydrocarbons. The most significant increase in the volumes of sorbed propylene and acetylene with the decrease in grain class was observed for coals of low porosity, high grade of metamorphism, and low to medium sorption capacities. The 10-fold decrease in coal grain size resulted in the 3 to 6-fold increase in the volume of sorbed propylene, and 2-fold increase for acetylene. The decrease in grain size results in higher accessibility of pore structure, increased pore volume and area, and higher number of active centers interacting with hydrocarbons of dipole characteristics. For coals with low grade metamorphism, high porosity, and high sorption capacity the volumes of sorbed propylene and acetylene increased only slightly with the decrease in coal grain size.

Suggested Citation

  • Agnieszka Dudzińska & Natalia Howaniec & Adam Smoliński, 2017. "Effect of Coal Grain Size on Sorption Capacity with Respect to Propylene and Acetylene," Energies, MDPI, vol. 10(11), pages 1-10, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1919-:d:119710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1919/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1919/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Czerw & Andrzej Krzyżanowski & Paweł Baran & Katarzyna Zarębska, 2022. "Vapour Sorption on Coal: Influence of Polarity and Rank," Energies, MDPI, vol. 15(9), pages 1-18, April.
    2. Zhenjian Liu & Zhenyu Zhang & Sing Ki Choi & Yiyu Lu, 2018. "Surface Properties and Pore Structure of Anthracite, Bituminous Coal and Lignite," Energies, MDPI, vol. 11(6), pages 1-14, June.
    3. Jarosław Chećko & Natalia Howaniec & Krzysztof Paradowski & Adam Smolinski, 2021. "Gas Migration in the Aspect of Safety in the Areas of Mines Selected for Closure," Resources, MDPI, vol. 10(7), pages 1-12, July.
    4. Paweł Baran & Katarzyna Czerw & Bogdan Samojeden & Natalia Czuma & Katarzyna Zarębska, 2018. "The Influence of Temperature on the Expansion of a Hard Coal-Gas System," Energies, MDPI, vol. 11(10), pages 1-10, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1919-:d:119710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.