IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3003-d797744.html
   My bibliography  Save this article

Harris Hawks Optimization-Based Algorithm for STATCOM Voltage Regulation of Offshore Wind Farm Grid

Author

Listed:
  • Ping-Kui Wang

    (Department of Electrical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan)

  • Yu-Jen Liu

    (Department of Electrical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan)

  • Jun-Tinn Lin

    (Department of Electrical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan)

  • Zen-Wei Wang

    (Facility Department, Taiwan Semiconductor Manufacturing Company, Tainan 741, Taiwan)

  • Hsu-Chih Cheng

    (Department of Electrical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan)

  • Bo-Xuan Huang

    (Department of Electrical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan)

  • Gary W. Chang

    (Department of Electrical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan)

Abstract

Wind energy is among the fastest-growing electric energy resources worldwide. As the electric power generated by wind turbines (WTs) varies, the WT-connected bus voltage fluctuates. This paper presents a study on implementing a swarm-based proportional and integral (PI) controller for GTO-STATCOM voltage regulator to mitigate the voltage fluctuation caused by the output variations of an offshore wind farm. The proposed swarm-based algorithm for the PI controller is Harris Hawks Optimization (HHO). Simulation results obtained by the HHO algorithm are compared with three other swarm-based algorithms and show that STATCOM with HHO-based PI controller can effectively regulate the WT-connected bus voltage under different wind power output conditions. It shows that the STATCOM compensation performance of the proposed algorithm is superior to that of the compared solutions in maintaining the stable WT-connected bus voltage.

Suggested Citation

  • Ping-Kui Wang & Yu-Jen Liu & Jun-Tinn Lin & Zen-Wei Wang & Hsu-Chih Cheng & Bo-Xuan Huang & Gary W. Chang, 2022. "Harris Hawks Optimization-Based Algorithm for STATCOM Voltage Regulation of Offshore Wind Farm Grid," Energies, MDPI, vol. 15(9), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3003-:d:797744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3003/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3003/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Varun Kumar & Ajay Shekhar Pandey & Sunil Kumar Sinha, 2020. "Stability Improvement of DFIG-Based Wind Farm Integrated Power System Using ANFIS Controlled STATCOM," Energies, MDPI, vol. 13(18), pages 1-18, September.
    2. Valeriya Tuzikova & Josef Tlusty & Zdenek Muller, 2018. "A Novel Power Losses Reduction Method Based on a Particle Swarm Optimization Algorithm Using STATCOM," Energies, MDPI, vol. 11(10), pages 1-15, October.
    3. Feng-Chang Gu & Hung-Cheng Chen, 2021. "An Anti-Fluctuation Compensator Design and Its Control Strategy for Wind Farm System," Energies, MDPI, vol. 14(19), pages 1-16, October.
    4. Yu-Hsiang Hung & Yi-Wei Chen & Cheng-Han Chuang & Yuan-Yih Hsu, 2021. "PSO Self-Tuning Power Controllers for Low Voltage Improvements of an Offshore Wind Farm in Taiwan," Energies, MDPI, vol. 14(20), pages 1-15, October.
    5. Ying-Yi Hong & Yu-Lun Hsieh, 2015. "Interval Type-II Fuzzy Rule-Based STATCOM for Voltage Regulation in the Power System," Energies, MDPI, vol. 8(8), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ozen Gunal & Mustafa Akpinar & Kevser Ovaz Akpinar, 2022. "Optimization of Laminar Boundary Layers in Flow over a Flat Plate Using Recent Metaheuristic Algorithms," Energies, MDPI, vol. 15(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid Chojaa & Aziz Derouich & Mohammed Taoussi & Seif Eddine Chehaidia & Othmane Zamzoum & Mohamed I. Mosaad & Ayman Alhejji & Mourad Yessef, 2022. "Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile," Energies, MDPI, vol. 15(18), pages 1-23, September.
    2. Mohsen Khalili & Touhid Poursheykh Aliasghari & Ebrahim Seifi Najmi & Almoataz Y. Abdelaziz & A. Abu-Siada & Saber Arabi Nowdeh, 2022. "Optimal Allocation of Distributed Thyristor Controlled Series Compensators in Power System Considering Overload, Voltage, and Losses with Reliability Effect," Energies, MDPI, vol. 15(20), pages 1-25, October.
    3. Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2023. "A Literature Review on the Optimal Placement of Static Synchronous Compensator (STATCOM) in Distribution Networks," Energies, MDPI, vol. 16(17), pages 1-38, August.
    4. Jaime A. Rohten & Javier E. Muñoz & Esteban S. Pulido & José J. Silva & Felipe A. Villarroel & José R. Espinoza, 2021. "Very Low Sampling Frequency Model Predictive Control for Power Converters in the Medium and High-Power Range Applications," Energies, MDPI, vol. 14(1), pages 1-18, January.
    5. David Rivera & Daniel Guillen & Jonathan C. Mayo-Maldonado & Jesus E. Valdez-Resendiz & Gerardo Escobar, 2021. "Power Grid Dynamic Performance Enhancement via STATCOM Data-Driven Control," Mathematics, MDPI, vol. 9(19), pages 1-21, September.
    6. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    7. Muhammad Moin Afzal & Muhammad Adil Khan & Muhammad Arshad Shehzad Hassan & Abdul Wadood & Waqar Uddin & S. Hussain & Sang Bong Rhee, 2020. "A Comparative Study of Supercapacitor-Based STATCOM in a Grid-Connected Photovoltaic System for Regulating Power Quality Issues," Sustainability, MDPI, vol. 12(17), pages 1-26, August.
    8. Wei Li & Mengjun Li & Ning Zhang & Xuesong Zhou & Jiegui Zhou & Guanyu Song, 2022. "Optimizing Allocation of Distributed Electric Heating for Large-Scale Access Distribution Considering the Influence of Power Quality," Energies, MDPI, vol. 15(10), pages 1-18, May.
    9. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    10. Gregorio Fernández & Alejandro Martínez & Noemí Galán & Javier Ballestín-Fuertes & Jesús Muñoz-Cruzado-Alba & Pablo López & Simon Stukelj & Eleni Daridou & Alessio Rezzonico & Dimosthenis Ioannidis, 2021. "Optimal D-STATCOM Placement Tool for Low Voltage Grids," Energies, MDPI, vol. 14(14), pages 1-31, July.
    11. Su-Han Pyo & Tae-Hun Kim & Byeong-Hyeon An & Jae-Deok Park & Jang-Hyun Park & Myoung-Jin Lee & Tae-Sik Park, 2022. "Distributed Generation Based Virtual STATCOM Configuration and Control Method," Energies, MDPI, vol. 15(5), pages 1-17, February.
    12. Ammar Hussein Mutlag & Azah Mohamed & Hussain Shareef, 2016. "A Nature-Inspired Optimization-Based Optimum Fuzzy Logic Photovoltaic Inverter Controller Utilizing an eZdsp F28335 Board," Energies, MDPI, vol. 9(3), pages 1-32, February.
    13. Zbigniew Kłosowski & Łukasz Mazur, 2023. "Influence of the Type of Receiver on Electrical Energy Losses in Power Grids," Energies, MDPI, vol. 16(15), pages 1-22, July.
    14. Ying-Yi Hong, 2016. "Electric Power Systems Research," Energies, MDPI, vol. 9(10), pages 1-4, October.
    15. Alena Otcenasova & Andrej Bolf & Juraj Altus & Michal Regula, 2019. "The Influence of Power Quality Indices on Active Power Losses in a Local Distribution Grid," Energies, MDPI, vol. 12(7), pages 1-31, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3003-:d:797744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.