IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2934-d795448.html
   My bibliography  Save this article

Flow and Thermal Analysis of a Racing Car Braking System

Author

Listed:
  • Carlo Cravero

    (Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti (DIME), Università degli Studi di Genova, Via Montallegro 1, 16145 Genoa, Italy)

  • Davide Marsano

    (Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti (DIME), Università degli Studi di Genova, Via Montallegro 1, 16145 Genoa, Italy)

Abstract

The braking system of a racing car is one of the main design challenges. The flow around and inside the wheel of an F1 car with all braking system components is analyzed in order to evaluate the heat transfer after a braking event. Very few studies have been published on this topic, mainly due to the high confidentiality level in the racing car sector. In the present work, using an actual geometry of an early 2000s F1 car, the braking system is simulated using a CFD approach. The boundary conditions for the wheel and brake system are taken from the simulation of a vehicle model with a front wing. Different heat transfer phenomena are progressively added to the model in order to understand their effects, including thermal convection only, radiation and conjugate heat transfer. Two different vehicle velocities are simulated to quantify and compare the heat removal after a braking event. The different heat transfer mechanisms have dramatic effects on the prediction of the brake cooling results, and these are quantified in order to understand the limitations of the simplified approaches. Finally, the influence of the ambient pressure at two different altitudes on the heat transfer from a braking event is studied.

Suggested Citation

  • Carlo Cravero & Davide Marsano, 2022. "Flow and Thermal Analysis of a Racing Car Braking System," Energies, MDPI, vol. 15(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2934-:d:795448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2934/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2934/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mattia Basso & Carlo Cravero & Davide Marsano, 2021. "Aerodynamic Effect of the Gurney Flap on the Front Wing of a F1 Car and Flow Interactions with Car Components," Energies, MDPI, vol. 14(8), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Kernytskyy & Aleksandr Volchenko & Olga Szlachetka & Orest Horbay & Vasyl Skrypnyk & Dmytro Zhuravlev & Vasyl Bolonnyi & Volodymyr Yankiv & Ruslan Humenuyk & Pavlo Polyansky & Aleksandra Leśniews, 2022. "Complex Heat Exchange in Friction Steam of Brakes," Energies, MDPI, vol. 15(19), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janusz Piechna, 2021. "A Review of Active Aerodynamic Systems for Road Vehicles," Energies, MDPI, vol. 14(23), pages 1-31, November.
    2. Krzysztof Kurec, 2022. "Numerical Study of the Sports Car Aerodynamic Enhancements," Energies, MDPI, vol. 15(18), pages 1-19, September.
    3. Jakub Broniszewski & Janusz Ryszard Piechna, 2022. "Fluid-Structure Interaction Analysis of a Competitive Car during Brake-in-Turn Manoeuvre," Energies, MDPI, vol. 15(8), pages 1-16, April.
    4. Maciej Szudarek & Janusz Piechna, 2021. "CFD Analysis of the Influence of the Front Wing Setup on a Time Attack Sports Car’s Aerodynamics," Energies, MDPI, vol. 14(23), pages 1-29, November.
    5. Min Chang & Zhongyuan Zheng & Xiaoxuan Meng & Junqiang Bai & Bo Wang, 2022. "Aerodynamic Analysis of a Low-Speed Tandem-Channel Wing for eVTOL Aircraft Considering Propeller–Wing Interaction," Energies, MDPI, vol. 15(22), pages 1-21, November.
    6. Daniel Martins & João Correia & André Silva, 2021. "The Influence of Front Wing Pressure Distribution on Wheel Wake Aerodynamics of a F1 Car," Energies, MDPI, vol. 14(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2934-:d:795448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.