IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2501-d782045.html
   My bibliography  Save this article

Aggregation of Demand-Side Flexibilities: A Comparative Study of Approximation Algorithms

Author

Listed:
  • Emrah Öztürk

    (Illwerke vkw Endowed Professorship for Energy Efficiency, Research Center Energy, Vorarlberg University of Applied Sciences, Hochschulstraße 1, 6850 Dornbirn, Austria
    Josef Ressel Centre for Intelligent Thermal Energy Systems, Vorarlberg University of Applied Sciences, Hochschulstraße 1, 6850 Dornbirn, Austria
    Institute for Energy Systems, Energy Efficiency and Energy Economics, TU Dortmund University, August-Schmidt-Straße 1, 44227 Dortmund, Germany)

  • Klaus Rheinberger

    (Illwerke vkw Endowed Professorship for Energy Efficiency, Research Center Energy, Vorarlberg University of Applied Sciences, Hochschulstraße 1, 6850 Dornbirn, Austria
    Josef Ressel Centre for Intelligent Thermal Energy Systems, Vorarlberg University of Applied Sciences, Hochschulstraße 1, 6850 Dornbirn, Austria)

  • Timm Faulwasser

    (Institute for Energy Systems, Energy Efficiency and Energy Economics, TU Dortmund University, August-Schmidt-Straße 1, 44227 Dortmund, Germany)

  • Karl Worthmann

    (Institute of Mathematics, Technische Universität Ilmenau, 98693 Ilmenau, Germany)

  • Markus Preißinger

    (Illwerke vkw Endowed Professorship for Energy Efficiency, Research Center Energy, Vorarlberg University of Applied Sciences, Hochschulstraße 1, 6850 Dornbirn, Austria
    Josef Ressel Centre for Intelligent Thermal Energy Systems, Vorarlberg University of Applied Sciences, Hochschulstraße 1, 6850 Dornbirn, Austria)

Abstract

Traditional power grids are mainly based on centralized power generation and subsequent distribution. The increasing penetration of distributed renewable energy sources and the growing number of electrical loads is creating difficulties in balancing supply and demand and threatens the secure and efficient operation of power grids. At the same time, households hold an increasing amount of flexibility, which can be exploited by demand-side management to decrease customer cost and support grid operation. Compared to the collection of individual flexibilities, aggregation reduces optimization complexity, protects households’ privacy, and lowers the communication effort. In mathematical terms, each flexibility is modeled by a set of power profiles, and the aggregated flexibility is modeled by the Minkowski sum of individual flexibilities. As the exact Minkowski sum calculation is generally computationally prohibitive, various approximations can be found in the literature. The main contribution of this paper is a comparative evaluation of several approximation algorithms in terms of novel quality criteria, computational complexity, and communication effort using realistic data. Furthermore, we investigate the dependence of selected comparison criteria on the time horizon length and on the number of households. Our results indicate that none of the algorithms perform satisfactorily in all categories. Hence, we provide guidelines on the application-dependent algorithm choice. Moreover, we demonstrate a major drawback of some inner approximations, namely that they may lead to situations in which not using the flexibility is impossible, which may be suboptimal in certain situations.

Suggested Citation

  • Emrah Öztürk & Klaus Rheinberger & Timm Faulwasser & Karl Worthmann & Markus Preißinger, 2022. "Aggregation of Demand-Side Flexibilities: A Comparative Study of Approximation Algorithms," Energies, MDPI, vol. 15(7), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2501-:d:782045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    2. Jianzhe Zhen & Dick den Hertog, 2018. "Computing the Maximum Volume Inscribed Ellipsoid of a Polytopic Projection," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 31-42, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seung-Jun Hahm & Ye-Eun Jang & Young-Jin Kim, 2022. "Virtual Battery Modeling of Air Conditioning Loads in the Presence of Unknown Heat Disturbances," Energies, MDPI, vol. 15(24), pages 1-15, December.
    2. Georgios Papazoglou & Pandelis Biskas, 2022. "Review of Methodologies for the Assessment of Feasible Operating Regions at the TSO–DSO Interface," Energies, MDPI, vol. 15(14), pages 1-24, July.
    3. Kabulo Loji & Sachin Sharma & Nomhle Loji & Gulshan Sharma & Pitshou N. Bokoro, 2023. "Operational Issues of Contemporary Distribution Systems: A Review on Recent and Emerging Concerns," Energies, MDPI, vol. 16(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    2. Theo Dronne & Fabien Roques & Marcelo Saguan, 2021. "Local Flexibility Markets for Distribution Network Congestion-Management in Center-Western Europe: Which Design for Which Needs?," Energies, MDPI, vol. 14(14), pages 1-18, July.
    3. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    4. ten Eikelder, Stefan, 2021. "Biologically-based radiation therapy planning and adjustable robust optimization," Other publications TiSEM 2654a17b-0a3c-4006-b644-e, Tilburg University, School of Economics and Management.
    5. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    6. Pavlos S. Georgilakis, 2020. "Review of Computational Intelligence Methods for Local Energy Markets at the Power Distribution Level to Facilitate the Integration of Distributed Energy Resources: State-of-the-art and Future Researc," Energies, MDPI, vol. 13(1), pages 1-37, January.
    7. Edoardo De Din & Fabian Bigalke & Marco Pau & Ferdinanda Ponci & Antonello Monti, 2021. "Analysis of a Multi-Timescale Framework for the Voltage Control of Active Distribution Grids," Energies, MDPI, vol. 14(7), pages 1-23, April.
    8. Aguado, José A. & Paredes, Ángel, 2023. "Coordinated and decentralized trading of flexibility products in Inter-DSO Local Electricity Markets via ADMM," Applied Energy, Elsevier, vol. 337(C).
    9. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    10. Marina Bertolini & Gregorio Morosinotto, 2023. "Business Models for Energy Community in the Aggregator Perspective: State of the Art and Research Gaps," Energies, MDPI, vol. 16(11), pages 1-26, June.
    11. Papadopoulos, Agis M., 2020. "Renewable energies and storage in small insular systems: Potential, perspectives and a case study," Renewable Energy, Elsevier, vol. 149(C), pages 103-114.
    12. Gourisetti, Sri Nikhil Gupta & Sebastian-Cardenas, D. Jonathan & Bhattarai, Bishnu & Wang, Peng & Widergren, Steve & Borkum, Mark & Randall, Alysha, 2021. "Blockchain smart contract reference framework and program logic architecture for transactive energy systems," Applied Energy, Elsevier, vol. 304(C).
    13. Ingrid Munné-Collado & Fabio Maria Aprà & Pol Olivella-Rosell & Roberto Villafáfila-Robles, 2019. "The Potential Role of Flexibility During Peak Hours on Greenhouse Gas Emissions: A Life Cycle Assessment of Five Targeted National Electricity Grid Mixes," Energies, MDPI, vol. 12(23), pages 1-22, November.
    14. Harsh Wardhan Pandey & Ramesh Kumar & Rajib Kumar Mandal, 2023. "Ranking of mitigation strategies for duck curve in Indian active distribution network using MCDM," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1255-1275, August.
    15. Nayeem Rahman & Rodrigo Rabetino & Arto Rajala & Jukka Partanen, 2021. "Ushering in a New Dawn: Demand-Side Local Flexibility Platform Governance and Design in the Finnish Energy Markets," Energies, MDPI, vol. 14(15), pages 1-23, July.
    16. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Hosna Khajeh & Hannu Laaksonen & Amin Shokri Gazafroudi & Miadreza Shafie-khah, 2019. "Towards Flexibility Trading at TSO-DSO-Customer Levels: A Review," Energies, MDPI, vol. 13(1), pages 1-19, December.
    18. Ladenburg, Jacob & Jensen, Kirsten Lund & Lodahl, Christa & Keles, Dogan, 2022. "Testing for non-linear willingness to accept compensation for controlled electricity switch-offs using choice experiments," Energy, Elsevier, vol. 238(PB).
    19. Đorđe Lazović & Željko Đurišić, 2023. "Advanced Flexibility Support through DSO-Coordinated Participation of DER Aggregators in the Balancing Market," Energies, MDPI, vol. 16(8), pages 1-26, April.
    20. Juan Sebastian Roncancio & José Vuelvas & Diego Patino & Carlos Adrián Correa-Flórez, 2022. "Flower Greenhouse Energy Management to Offer Local Flexibility Markets," Energies, MDPI, vol. 15(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2501-:d:782045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.