IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2357-d778185.html
   My bibliography  Save this article

Control of the Solar Radiation Reception Rate (SRRR) Using a Novel Poly-Tilted Segmented Panel (PTSP) in the Region of Makkah, Saudi Arabia

Author

Listed:
  • Faris Alqurashi

    (Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah 77207, Saudi Arabia
    Mechanical Engineering Department, College of Engineering, University of Bisha, Bisha 61922, Saudi Arabia)

  • Rached Nciri

    (Department of Mechanical Engineering, Higher Institute of Technological Studies of Gafsa, General Directorate of Technological Studies, Radès Médina 2098, Tunisia
    Laboratory of Electro-Mechanical Systems (LASEM), National Engineering School of Sfax-ENIS, University of Sfax, B.P. W3038, Sfax 3038, Tunisia)

  • Abdulrahman Alghamdi

    (Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah 77207, Saudi Arabia)

  • Chaouki Ali

    (Laboratory of Electro-Mechanical Systems (LASEM), National Engineering School of Sfax-ENIS, University of Sfax, B.P. W3038, Sfax 3038, Tunisia
    Department of Technological Paths, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia)

  • Faouzi Nasri

    (Mechanical Engineering Department, College of Engineering, University of Bisha, Bisha 61922, Saudi Arabia)

Abstract

This work deals with controlling the solar radiation reception rate (SRRR) (ratio of the incident solar radiation on tilted panel to the global incident solar radiation). Controlling the SRRR will permit the amount of the received solar energy on solar panels to be adjusted. This SRRR control is very useful for several technological applications such as solar thermal and photovoltaic technologies in extremely sunny regions around the world, such as the case of Makkah, Saudi Arabia. Thus, the sustainability of the cities and villages, located in such regions, is promoted. A novel design proposing a poly-tilted segmented panel (PTSP) is proposed as an original techno-logical solution enabling the control of the SRRR. Design technical details are clearly explained. The proposed design presents a cheap, simple and effective alternative to conventional sun tracking systems. The SRRR on the proposed PTSP is mathematically modeled. The influence of the combinations “number of segment/tilt angles” on the SRRR is assessed for the most significant days in the year: equinox, summer solstice and winter solstice. A specific “document-aided design”, showing the SRRR level reached by each specific combination “num-ber of segment/tilt angles”, is provided. Based on these documents, the adequate combination “number of segment/tilt angles” is easily determined by knowing the desired SRRR level. The SRRR level is determined based on the global incident solar radiation and the desired level of the incident so-lar radiation on the tilted panel. Results are properly presented, discussed and interpreted for each segment/tilt angles combination.

Suggested Citation

  • Faris Alqurashi & Rached Nciri & Abdulrahman Alghamdi & Chaouki Ali & Faouzi Nasri, 2022. "Control of the Solar Radiation Reception Rate (SRRR) Using a Novel Poly-Tilted Segmented Panel (PTSP) in the Region of Makkah, Saudi Arabia," Energies, MDPI, vol. 15(7), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2357-:d:778185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2357/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2357/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forero, N.L. & Caicedo, L.M. & Gordillo, G., 2007. "Correlation of global solar radiation values estimated and measured on an inclined surface for clear days in Bogotá," Renewable Energy, Elsevier, vol. 32(15), pages 2590-2602.
    2. Benghanem, M., 2011. "Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia," Applied Energy, Elsevier, vol. 88(4), pages 1427-1433, April.
    3. Jamroen, Chaowanan & Fongkerd, Chanon & Krongpha, Wipa & Komkum, Preecha & Pirayawaraporn, Alongkorn & Chindakham, Nachaya, 2021. "A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis," Applied Energy, Elsevier, vol. 299(C).
    4. Das, Mehmet & Akpinar, Ebru Kavak, 2021. "Investigation of the effects of solar tracking system on performance of the solar air dryer," Renewable Energy, Elsevier, vol. 167(C), pages 907-916.
    5. Almarshoud, A.F., 2016. "Performance of solar resources in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 694-701.
    6. ElGamal, Ramadan & Kishk, Sameh & Al-Rejaie, Salim & ElMasry, Gamal, 2021. "Incorporation of a solar tracking system for enhancing the performance of solar air heaters in drying apple slices," Renewable Energy, Elsevier, vol. 167(C), pages 676-684.
    7. Jaeun Kim & Matheus Rabelo & Siva Parvathi Padi & Hasnain Yousuf & Eun-Chel Cho & Junsin Yi, 2021. "A Review of the Degradation of Photovoltaic Modules for Life Expectancy," Energies, MDPI, vol. 14(14), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Garni, Hassan Z. & Awasthi, Anjali & Wright, David, 2019. "Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia," Renewable Energy, Elsevier, vol. 133(C), pages 538-550.
    2. Khanlari, Ataollah & Sözen, Adnan & Afshari, Faraz & Tuncer, Azim Doğuş, 2021. "Energy-exergy and sustainability analysis of a PV-driven quadruple-flow solar drying system," Renewable Energy, Elsevier, vol. 175(C), pages 1151-1166.
    3. Xuan Cuong Ngo & Thi Hong Nguyen & Nhu Y Do & Duc Minh Nguyen & Dai-Viet N. Vo & Su Shiung Lam & Doyeon Heo & Mohammadreza Shokouhimehr & Van-Huy Nguyen & Rajender S. Varma & Soo Young Kim & Quyet Van, 2020. "Grid-Connected Photovoltaic Systems with Single-Axis Sun Tracker: Case Study for Central Vietnam," Energies, MDPI, vol. 13(6), pages 1-14, March.
    4. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    5. Rashwan, Sherif S. & Shaaban, Ahmed M. & Al-Suliman, Fahad, 2017. "A comparative study of a small-scale solar PV power plant in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 313-318.
    6. Aditya Rachman & Usman Rianse & Mustarum Musaruddin & Kurniati Ornam, 2015. "Technical, Economical and Environmental Assessments of the Solar Photovoltaic Technology in Southeast Sulawesi, a Developing Province in Eastern Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 918-925.
    7. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    8. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Armendariz-Lopez, J.F. & Luna-Leon, A. & Gonzalez-Trevizo, M.E. & Arena-Granados, A.P. & Bojorquez-Morales, G., 2016. "Life cycle cost of photovoltaic technologies in commercial buildings in Baja California, Mexico," Renewable Energy, Elsevier, vol. 87(P1), pages 564-571.
    10. Bingham, Raymond D. & Agelin-Chaab, Martin & Rosen, Marc A., 2019. "Whole building optimization of a residential home with PV and battery storage in The Bahamas," Renewable Energy, Elsevier, vol. 132(C), pages 1088-1103.
    11. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    12. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "Validation of a Simulation-Based Pre-Assessment Process for Solar Photovoltaic Technology Implemented on Rooftops of South African Shopping Centres," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    13. Ronewa Collen Nemalili & Lordwell Jhamba & Joseph Kiprono Kirui & Caston Sigauke, 2023. "Nowcasting Hourly-Averaged Tilt Angles of Acceptance for Solar Collector Applications Using Machine Learning Models," Energies, MDPI, vol. 16(2), pages 1-19, January.
    14. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    15. Nicole E. Statler & Amanda M. Adams & Ted C. Eckmann, 2017. "Optimizing angles of rooftop photovoltaics, ratios of solar to vegetated roof systems, and economic benefits, in Portland, Oregon, USA," Environment Systems and Decisions, Springer, vol. 37(3), pages 320-331, September.
    16. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    17. Meena, Roopmati & Pareek, Arti & Gupta, Rajesh, 2024. "A comprehensive Review on interfacial delamination in photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    18. Agrawal, Monika & Chhajed, Priyank & Chowdhury, Amartya, 2022. "Performance analysis of photovoltaic module with reflector: Optimizing orientation with different tilt scenarios," Renewable Energy, Elsevier, vol. 186(C), pages 10-25.
    19. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    20. Si, Pengfei & Feng, Ya & Lv, Yuexia & Rong, Xiangyang & Pan, Yungang & Liu, Xichen & Yan, Jinyue, 2017. "An optimization method applied to active solar energy systems for buildings in cold plateau areas – The case of Lhasa," Applied Energy, Elsevier, vol. 194(C), pages 487-498.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2357-:d:778185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.