IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2354-d778033.html
   My bibliography  Save this article

Decoupling Investigation of Furnace Side and Evaporation System in a Pulverized-Coal Oxy-Fuel Combustion Boiler

Author

Listed:
  • Zixue Luo

    (State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Zixuan Feng

    (State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Bo Wu

    (State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Qiang Cheng

    (State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

A distributed parameter model was developed for an evaporation system in a 35 MW natural circulation pulverized-coal oxy-fuel combustion boiler, which was based on a computational fluid dynamic simulation and in situ operation monitoring. A mathematical model was used to consider the uneven distribution of working fluid properties and the heat load in a furnace to predict the heat flux of a water wall and the wall surface temperature corresponding to various working conditions. The results showed that the average heat flux near the burner area in the air-firing condition, the oxy-fuel combustion with dry flue gas recycling (FGR) condition, and the oxy-fuel combustion with wet flue-gas recycle condition were 168.18, 154.65, and 170.68 kW/m 2 at a load of 80%. The temperature and the heat flux distributions in the air-firing and the oxy-fuel combustion with wet FGR were similar, but both were higher than those in the oxygen-enriched combustion conditions with the dry FGR under the same load. This study demonstrated that the average metal surface temperature in the front wall during the oxy-fuel combustion condition was 3.23 °C lower than that under the air-firing condition. The heat release rate from the furnace and the vaporization system should be coordinated at a low and middle load level. The superheating surfaces should be adjusted to match the rising temperature of the flue gas while shifting the operation from air to oxy-fuel combustion, where the distributed parameter analytical approach could then be applied to reveal the tendencies for these various combustion conditions. The research provided a type of guidance for the design and operation of the oxy-fuel combustion boiler.

Suggested Citation

  • Zixue Luo & Zixuan Feng & Bo Wu & Qiang Cheng, 2022. "Decoupling Investigation of Furnace Side and Evaporation System in a Pulverized-Coal Oxy-Fuel Combustion Boiler," Energies, MDPI, vol. 15(7), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2354-:d:778033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joon Ahn & Hyouck-Ju Kim, 2021. "Combustion Characteristics of 0.5 MW Class Oxy-Fuel FGR (Flue Gas Recirculation) Boiler for CO 2 Capture," Energies, MDPI, vol. 14(14), pages 1-13, July.
    2. Laubscher, Ryno & De Villiers, Etienne, 2021. "Integrated mathematical modelling of a 105 t/h biomass fired industrial watertube boiler system with varying fuel moisture content," Energy, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2354-:d:778033. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.