IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2087-d769996.html
   My bibliography  Save this article

Vertical Dynamic Impedance of a Viscoelastic Pile in Arbitrarily Layered Soil Based on the Fictitious Soil Pile Model

Author

Listed:
  • Xiaoyan Yang

    (Faculty of Engineering, Zhejiang Institute, China University of Geosciences, Wuhan 430074, China)

  • Lixing Wang

    (Faculty of Engineering, Zhejiang Institute, China University of Geosciences, Wuhan 430074, China)

  • Wenbing Wu

    (Faculty of Engineering, Zhejiang Institute, China University of Geosciences, Wuhan 430074, China
    Research Center of Coastal Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
    Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China)

  • Hao Liu

    (Faculty of Engineering, Zhejiang Institute, China University of Geosciences, Wuhan 430074, China
    Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China)

  • Guosheng Jiang

    (Faculty of Engineering, Zhejiang Institute, China University of Geosciences, Wuhan 430074, China)

  • Kuihua Wang

    (Research Center of Coastal Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China)

  • Guoxiong Mei

    (Faculty of Engineering, Zhejiang Institute, China University of Geosciences, Wuhan 430074, China
    Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China)

Abstract

The vertical vibration of a viscoelastic pile immersed in arbitrarily layered soil is investigated by taking the interaction among pile, pile surrounding soil (PSS) and pile end soil (PES) into account. Firstly, considering both the stratification and stress wave effect of soil, a mathematical model of the pile–soil system is established based on the fictitious soil pile (FSP) model. Then, utilizing the impedance function transfer method and Laplace transform technique, the analytical solutions of the vertical dynamic impedance of pile are derived in the frequency domain. The analytical solutions are validated by comparing them with other existing solutions. Finally, a parametric study is put forward to investigate the properties of PES on the vertical dynamic impedance of pile. The results reveal that the properties of PES have a significant effect on the vertical dynamic impedance of pile, but there is a critical influence thickness for this effect. For the cases of the PES thickness exceeding the critical influence thickness, further increase of PES thickness will not affect the dynamic behavior of the pile–soil system.

Suggested Citation

  • Xiaoyan Yang & Lixing Wang & Wenbing Wu & Hao Liu & Guosheng Jiang & Kuihua Wang & Guoxiong Mei, 2022. "Vertical Dynamic Impedance of a Viscoelastic Pile in Arbitrarily Layered Soil Based on the Fictitious Soil Pile Model," Energies, MDPI, vol. 15(6), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2087-:d:769996
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Libo Chen & Xiaoyan Yang & Lichen Li & Wenbing Wu & M. Hesham El Naggar & Kuihua Wang & Jinyong Chen, 2020. "Numerical Analysis of the Deformation Performance of Monopile under Wave and Current Load," Energies, MDPI, vol. 13(23), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjie Guan & Meixia Zhang & Zekun Wang & Guosheng Jiang & Wenqi Liu & Sheng Cao & Chin Jian Leo & Elieen An & Xiaodong Gao & Wenbing Wu, 2022. "Influence of the Three-Dimensional Effect of Pile-Soil System on the Vertical Dynamic Response of Large-Diameter Piles in Low-Strain Integrity Testing," Energies, MDPI, vol. 15(24), pages 1-23, December.
    2. Wenbing Wu & Yunpeng Zhang, 2022. "A Review of Pile Foundations in Viscoelastic Medium: Dynamic Analysis and Wave Propagation Modeling," Energies, MDPI, vol. 15(24), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Liu & Jiaxuan Li & Xiaoyan Yang & Libo Chen & Wenbing Wu & Minjie Wen & Mingjie Jiang & Changjiang Guo, 2022. "Lateral Dynamic Response of Offshore Pipe Piles Considering Effect of Superstructure," Energies, MDPI, vol. 15(18), pages 1-20, September.
    2. Shan Liu & Zhenyu Liu, 2022. "Influence of Currents on the Breaking Wave Forces Acting on Monopiles over an Impermeable Slope," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    3. Sudip Basack & Ghritartha Goswami & Zi-Hang Dai & Parinita Baruah, 2022. "Failure-Mechanism and Design Techniques of Offshore Wind Turbine Pile Foundation: Review and Research Directions," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    4. Wenbing Wu & Yunpeng Zhang, 2022. "A Review of Pile Foundations in Viscoelastic Medium: Dynamic Analysis and Wave Propagation Modeling," Energies, MDPI, vol. 15(24), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2087-:d:769996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.