IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p1979-d766921.html
   My bibliography  Save this article

Robust Predictive Control with Three-Vector Modulation Connected to the Power Grid

Author

Listed:
  • Angelo Lunardi

    (Department of Electrical and Computer Engineering, University of São Paulo, São Paulo 05508-060, Brazil
    These authors contributed equally to this work.)

  • Eliomar R. Conde D.

    (The Engineering, Modeling and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André 09.210-170, Brazil
    These authors contributed equally to this work.)

  • Renato M. Monaro

    (Department of Electrical and Computer Engineering, University of São Paulo, São Paulo 05508-060, Brazil
    These authors contributed equally to this work.)

  • Darlan A. Fernandes

    (Department of Electrical Engineering, Federal University of Paraíba, João Pessoa 58059900, Brazil
    These authors contributed equally to this work.)

  • Alfeu J. Sguarezi Filho

    (The Engineering, Modeling and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André 09.210-170, Brazil
    These authors contributed equally to this work.)

Abstract

Robust predictive control is presented in this article using a three-vector modulation for a grid-connected three-phase inverter. The aims of this article are proposing a robust controller that is able to deal with some variations of parameters that occur in practical systems and demonstrating the performance of the controller with experimental tests that change the inductance and consequently the parasitic resistance of the plant; the same controller can predictive the changes to obtain the optimal performance. The article also presents mathematical modeling for plants and controllers and a modulation method to solve the variable frequency problem. Experimental tests corroborate the expected results and validate the controller’s efficiency according to the control system analysis requirements and the IEEE 1547.2-2008 standard.

Suggested Citation

  • Angelo Lunardi & Eliomar R. Conde D. & Renato M. Monaro & Darlan A. Fernandes & Alfeu J. Sguarezi Filho, 2022. "Robust Predictive Control with Three-Vector Modulation Connected to the Power Grid," Energies, MDPI, vol. 15(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1979-:d:766921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/1979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/1979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bersalli, Germán & Menanteau, Philippe & El-Methni, Jonathan, 2020. "Renewable energy policy effectiveness: A panel data analysis across Europe and Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    3. Angelo Lunardi & Eliomar R. Conde D & Jefferson de Assis & Darlan A. Fernandes & Alfeu J. Sguarezi Filho, 2021. "Model Predictive Control with Modulator Applied to Grid Inverter under Voltage Distorted," Energies, MDPI, vol. 14(16), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelo Lunardi & Eliomar R. Conde D & Jefferson de Assis & Darlan A. Fernandes & Alfeu J. Sguarezi Filho, 2021. "Model Predictive Control with Modulator Applied to Grid Inverter under Voltage Distorted," Energies, MDPI, vol. 14(16), pages 1-13, August.
    2. Mac Clay, Pablo & Börner, Jan & Sellare, Jorge, 2023. "Institutional and macroeconomic stability mediate the effect of auctions on renewable energy capacity," Energy Policy, Elsevier, vol. 180(C).
    3. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    4. Ahmed Y. Hatata & Mohamed A. Essa & Bishoy E. Sedhom, 2022. "Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things," Energies, MDPI, vol. 15(15), pages 1-24, August.
    5. Degirmenci, Tunahan & Yavuz, Hakan, 2024. "Environmental taxes, R&D expenditures and renewable energy consumption in EU countries: Are fiscal instruments effective in the expansion of clean energy?," Energy, Elsevier, vol. 299(C).
    6. Fleck, Ann-Katrin & Anatolitis, Vasilios, 2023. "Achieving the objectives of renewable energy policy – Insights from renewable energy auction design in Europe," Energy Policy, Elsevier, vol. 173(C).
    7. Evgeniy Kirichenko & Ksenia Kirichenko & Anna Kirichenko, 2024. "List of Issues That Require Legal Regulation as Part of the Renewable Energy Regulation in Component States of Federation," Energies, MDPI, vol. 17(3), pages 1-24, February.
    8. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    9. Li-chen Zhang & Zheng-ai Dong & Zhi-xiong Tan & Jia-hui Luo & De-kui Yan, 2024. "Institutional Performance and Carbon Reduction Effect of High-Quality Development of New Energy: China’s Experience and Policy Implication," Sustainability, MDPI, vol. 16(16), pages 1-26, August.
    10. Murillo Cobe Vargas & Oureste Elias Batista & Yongheng Yang, 2023. "Estimation Method of Short-Circuit Current Contribution of Inverter-Based Resources for Symmetrical Faults," Energies, MDPI, vol. 16(7), pages 1-27, March.
    11. Hu, Xing & Yu, Shiwei & Fang, Xu & Ovaere, Marten, 2023. "Which combinations of renewable energy policies work better? Insights from policy text synergies in China," Energy Economics, Elsevier, vol. 127(PA).
    12. Azeredo, Lucas F.S. & Yahyaoui, Imene & Fiorotti, Rodrigo & Fardin, Jussara F. & Garcia-Pereira, Hilel & Rocha, Helder R.O., 2023. "Study of reducing losses, short-circuit currents and harmonics by allocation of distributed generation, capacitor banks and fault current limiters in distribution grids," Applied Energy, Elsevier, vol. 350(C).
    13. Xu Wang & Xiang Su & Ke Bi, 2023. "Achieving Synergies of Carbon Emission Reduction, Cost Savings, and Asset Investments in China’s Industrial Sector: Towards Sustainable Practices," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    14. Liu, Ying & Feng, Chao, 2023. "Promoting renewable energy through national energy legislation," Energy Economics, Elsevier, vol. 118(C).
    15. Aleksandr Kulikov & Anton Loskutov & Dmitriy Bezdushniy, 2022. "Relay Protection and Automation Algorithms of Electrical Networks Based on Simulation and Machine Learning Methods," Energies, MDPI, vol. 15(18), pages 1-19, September.
    16. Di Foggia, Giacomo & Beccarello, Massimo, 2024. "European roadmaps to achieving 2030 renewable energy targets," Utilities Policy, Elsevier, vol. 88(C).
    17. Reni Pantcheva, 2024. "Economic and Social Drivers of Renewable Energy Consumption in the European Union: An Econometric Analysis," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 7, pages 62-84.
    18. Lai, Aolin & Wang, Qunwei, 2024. "How coal de-capacity policy affects renewable energy development efficiency? Evidence from China," Energy, Elsevier, vol. 286(C).
    19. Dogan, Eyup & Chishti, Muhammad Zubair & Karimi Alavijeh, Nooshin & Tzeremes, Panayiotis, 2022. "The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    20. Peng Tian & Zetao Li & Zhenghang Hao, 2019. "A Doubly-Fed Induction Generator Adaptive Control Strategy and Coordination Technology Compatible with Feeder Automation," Energies, MDPI, vol. 12(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1979-:d:766921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.