IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1503-d751920.html
   My bibliography  Save this article

Investigation on the Ammonia Boiling Heat Transfer Coefficient in Plate Heat Exchangers

Author

Listed:
  • Anica Ilie

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 66 Pache Protopopescu Blvd., 020396 Bucharest, Romania)

  • Alina Girip

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 66 Pache Protopopescu Blvd., 020396 Bucharest, Romania)

  • Răzvan Calotă

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 66 Pache Protopopescu Blvd., 020396 Bucharest, Romania)

  • Andreea Călin

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 66 Pache Protopopescu Blvd., 020396 Bucharest, Romania)

Abstract

This investigation aims to compare the experimental and theoretical ammonia boiling heat transfer coefficient in a plate heat exchanger (PHE). Measured data were gathered during functioning of a single stage vapor mechanical compression refrigeration system placed in the Thermal Systems Research Center of the Technical University of Civil Buildings Bucharest (TUCEB). Experimental values fall within the range of 1377–3050 W/m 2 K. Theoretical values were obtained from 12 correlations confirmed by the literature to date, developed for similar working conditions. The experimental values are close to the theoretical ones for Shah and Jokar correlations applied for a vapor quality of 0.5. The theoretical values are in the range of 1440–2076 W/m 2 K and 1558–2318 W/m 2 K, respectively. Shah correlation predicted 82.35% of all data within the ±30% error band at an MAE value of 14.23%, and Jokar et al. predicted 76.47% of all data within the ±30% error band with an MAE value of 17.7%.

Suggested Citation

  • Anica Ilie & Alina Girip & Răzvan Calotă & Andreea Călin, 2022. "Investigation on the Ammonia Boiling Heat Transfer Coefficient in Plate Heat Exchangers," Energies, MDPI, vol. 15(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1503-:d:751920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Ji & Zhu, Xiaowei & Mondejar, Maria E. & Haglind, Fredrik, 2019. "A review of heat transfer enhancement techniques in plate heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 305-328.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    2. Dezan, Daniel J. & Rocha, André D. & Ferreira, Wallace G., 2020. "Parametric sensitivity analysis and optimisation of a solar air heater with multiple rows of longitudinal vortex generators," Applied Energy, Elsevier, vol. 263(C).
    3. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    4. Seyed Hadi Pourhoseini & Mojtaba Baghban & Maryam Ghodrat, 2023. "A Comparative Thermal and Economic Investigation of Similar Shell & Tube and Plate Heat Exchangers with Low Concentration Ag-H 2 O Nanofluid," Energies, MDPI, vol. 16(4), pages 1-13, February.
    5. Chen, Jian & Li, Nianqi & Ding, Yu & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Wang, Qiuwang & Zeng, Min, 2020. "Experimental thermal-hydraulic performances of heat exchangers with different baffle patterns," Energy, Elsevier, vol. 205(C).
    6. Azeez mohammed Hussein, Hind & Zulkifli, Rozli & Faizal Bin Wan Mahmood, Wan Mohd & Ajeel, Raheem K., 2022. "Structure parameters and designs and their impact on performance of different heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Ma, Ting & Zhang, Pan & Deng, Tianrui & Ke, Hanbing & Lin, Yuansheng & Wang, Qiuwang, 2021. "Thermal-hydraulic characteristics of printed circuit heat exchanger used for floating natural gas liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Arnut Phila & Chinaruk Thianpong & Smith Eiamsa-ard, 2019. "Influence of Geometric Parameters of Alternate Axis Twisted Baffles on the Local Heat Transfer Distribution and Pressure Drop in a Rectangular Channel Using a Transient Liquid Crystal Technique," Energies, MDPI, vol. 12(12), pages 1-25, June.
    9. Zhang, Ji & Wu, Ding & Huang, Xiaohui & Hu, Xudong & Fang, Xi & Wen, Chuang, 2024. "Comparative study on the organic rankine cycle off-design performance under different zeotropic mixture flow boiling correlations," Renewable Energy, Elsevier, vol. 226(C).
    10. Gürdal, Mehmet & Arslan, Kamil & Gedik, Engin & Minea, Alina Adriana, 2022. "Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Ajagekar, Akshay & You, Fengqi, 2019. "Quantum computing for energy systems optimization: Challenges and opportunities," Energy, Elsevier, vol. 179(C), pages 76-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1503-:d:751920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.