IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1385-d749140.html
   My bibliography  Save this article

Dynamic Price-Based Demand Response through Linear Regression for Microgrids with Renewable Energy Resources

Author

Listed:
  • Muhammad Arshad Shehzad Hassan

    (Department of Electrical Engineering, The University of Faisalabad, Faisalabad 38000, Pakistan)

  • Ussama Assad

    (Department of Electrical Engineering, The University of Faisalabad, Faisalabad 38000, Pakistan)

  • Umar Farooq

    (Department of Electrical Engineering, The University of Faisalabad, Faisalabad 38000, Pakistan)

  • Asif Kabir

    (Department of CS & IT, University of Kotli, Azad Jammu & Kashmir, Azad Jammu and Kashmir 11100, Pakistan)

  • Muhammad Zeeshan Khan

    (Department of Electrical Engineering, The University of Faisalabad, Faisalabad 38000, Pakistan)

  • S. Sabahat H. Bukhari

    (School of Computer Science, Neijiang Normal University, Neijiang 641100, China)

  • Zain ul Abidin Jaffri

    (College of Physics and Electronic Information Engineering, Neijiang Normal University, Neijiang 641100, China)

  • Judit Oláh

    (Faculty of Economics and Business, University of Debrecen, 4032 Debrecen, Hungary
    College of Business and Economics, University of Johannesburg, Johannesburg 2006, South Africa)

  • József Popp

    (College of Business and Economics, University of Johannesburg, Johannesburg 2006, South Africa
    Hungarian National Bank—Research Center, John von Neumann University, Izsáki út 10, 6000 Kecskemét, Hungary)

Abstract

The green innovations in the energy sector are smart solutions to meet the excessive power requirements through renewable energy resources (RERs). These resources have forwarded the revolutionary relief in control of carbon dioxide gaseous emissions from traditional energy resources. The use of RERs in a heuristic manner is necessary to meet the demand side management in microgrids (MGs). The pricing scheme limitations hinder the profit maximization of MG and their customers. In addition, recent pricing schemes lack mechanistic underpinning. Therefore, a dynamic electricity pricing scheme through linear regression is designed for RERs to maximize the profit of load customers (changeable and unchangeable) in MG. The demand response optimization problem is solved through the particle swarm optimization (PSO) technique. The proposed dynamic electricity pricing scheme is evaluated under two different scenarios. The simulation results verified that the proposed dynamic electricity pricing scheme sustained the profit margins and comforts for changeable and unchangeable load customers as compared to fixed electricity pricing schemes in both scenarios. Hence, the proposed dynamic electricity pricing scheme can readily be used for real microgrids (MGs) to grasp the goal for cleaner energy production.

Suggested Citation

  • Muhammad Arshad Shehzad Hassan & Ussama Assad & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Dynamic Price-Based Demand Response through Linear Regression for Microgrids with Renewable Energy Resources," Energies, MDPI, vol. 15(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1385-:d:749140
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    2. Kamalova Mariyakhan & Elyas Abdulahi Mohamued & Muhammad Asif Khan & József Popp & Judit Oláh, 2020. "Does the Level of Absorptive Capacity Matter for Carbon Intensity? Evidence from the USA and China," Energies, MDPI, vol. 13(2), pages 1-18, January.
    3. Mahboubi-Moghaddam, Esmaeil & Nayeripour, Majid & Aghaei, Jamshid, 2016. "Reliability constrained decision model for energy service provider incorporating demand response programs," Applied Energy, Elsevier, vol. 183(C), pages 552-565.
    4. Urooj Asgher & Muhammad Babar Rasheed & Ameena Saad Al-Sumaiti & Atiq Ur-Rahman & Ihsan Ali & Amer Alzaidi & Abdullah Alamri, 2018. "Smart Energy Optimization Using Heuristic Algorithm in Smart Grid with Integration of Solar Energy Sources," Energies, MDPI, vol. 11(12), pages 1-26, December.
    5. Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
    6. Ourahou, M. & Ayrir, W. & EL Hassouni, B. & Haddi, A., 2020. "Review on smart grid control and reliability in presence of renewable energies: Challenges and prospects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 167(C), pages 19-31.
    7. Alagoz, B.B. & Kaygusuz, A. & Karabiber, A., 2012. "A user-mode distributed energy management architecture for smart grid applications," Energy, Elsevier, vol. 44(1), pages 167-177.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sushmita Kujur & Hari Mohan Dubey & Surender Reddy Salkuti, 2023. "Demand Response Management of a Residential Microgrid Using Chaotic Aquila Optimization," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    2. Pourramezan, Ali & Samadi, Mahdi, 2023. "A system dynamics investigation on the long-term impacts of demand response in generation investment planning incorporating renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Wenqiang Guo & Xinyi Xu, 2022. "Comprehensive Energy Demand Response Optimization Dispatch Method Based on Carbon Trading," Energies, MDPI, vol. 15(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Davarzani, Sima & Granell, Ramon & Taylor, Gareth A. & Pisica, Ioana, 2019. "Implementation of a novel multi-agent system for demand response management in low-voltage distribution networks," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Kong, Xiangyu & Kong, Deqian & Yao, Jingtao & Bai, Linquan & Xiao, Jie, 2020. "Online pricing of demand response based on long short-term memory and reinforcement learning," Applied Energy, Elsevier, vol. 271(C).
    4. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    5. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Tian, Ning & Zhao, Wei, 2023. "Incentive-based demand response strategies for natural gas considering carbon emissions and load volatility," Applied Energy, Elsevier, vol. 348(C).
    6. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    7. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    8. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    9. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    10. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    11. Yuan, Xiaohui & Chen, Zhihuan & Yuan, Yanbin & Huang, Yuehua, 2015. "Design of fuzzy sliding mode controller for hydraulic turbine regulating system via input state feedback linearization method," Energy, Elsevier, vol. 93(P1), pages 173-187.
    12. Angel Recalde & Ricardo Cajo & Washington Velasquez & Manuel S. Alvarez-Alvarado, 2024. "Machine Learning and Optimization in Energy Management Systems for Plug-In Hybrid Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 17(13), pages 1-39, June.
    13. Asad, R. & Kazemi, A., 2014. "A novel distributed optimal power sharing method for radial dc microgrids with different distributed energy sources," Energy, Elsevier, vol. 72(C), pages 291-299.
    14. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.
    15. Mughees, Neelam & Jaffery, Mujtaba Hussain & Mughees, Anam & Ansari, Ejaz Ahmad & Mughees, Abdullah, 2023. "Reinforcement learning-based composite differential evolution for integrated demand response scheme in industrial microgrids," Applied Energy, Elsevier, vol. 342(C).
    16. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    17. Alagoz, B. Baykant & Kaygusuz, Asim & Akcin, Murat & Alagoz, Serkan, 2013. "A closed-loop energy price controlling method for real-time energy balancing in a smart grid energy market," Energy, Elsevier, vol. 59(C), pages 95-104.
    18. Chitchai Srithapon & Prasanta Ghosh & Apirat Siritaratiwat & Rongrit Chatthaworn, 2020. "Optimization of Electric Vehicle Charging Scheduling in Urban Village Networks Considering Energy Arbitrage and Distribution Cost," Energies, MDPI, vol. 13(2), pages 1-20, January.
    19. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    20. Montuori, Lina & Alcázar-Ortega, Manuel, 2021. "Demand response strategies for the balancing of natural gas systems: Application to a local network located in The Marches (Italy)," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1385-:d:749140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.