IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1360-d748797.html
   My bibliography  Save this article

Estimation of Total Solar Transmittance for Twin-Wall Polycarbonate Sheet with Rectangular Structure on the Basis of Experimental Research

Author

Listed:
  • Zbigniew Zapałowicz

    (Department of Energy Technologies, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, al. Piastów 17, 70-310 Szczecin, Poland)

  • Oliwer Wojnicki

    (Department of Energy Technologies, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, al. Piastów 17, 70-310 Szczecin, Poland)

Abstract

The consumption of heat energy as well as electric power in an exploitation process of a building construction depends among others on properties of materials applied to construct its partitions. Increasingly, glass is being replaced by plastics in transparent partitions, including multi-wall polycarbonate sheets. Light transmission and solar radiation transferred to the object’s inside through transparent partitions are decisive factors for its lighting and energy balance. The present paper presents an analysis, on an experimental basis, of the changes of total solar transmittance (TST) for a clear twin-wall polycarbonate sheet with a rectangular structure applied as a swimming pool enclosure. Research shows that values of the above parameter do not depend meaningfully on cloudiness but on time of day. Values of TST can change in the daytime depending on incidence angles and on shares of direct and diffusive solar radiation in global solar radiation. TST values are in the range 0.6–0.7, and they are lower than the value of 0.8, which is given by the producer in the product card.

Suggested Citation

  • Zbigniew Zapałowicz & Oliwer Wojnicki, 2022. "Estimation of Total Solar Transmittance for Twin-Wall Polycarbonate Sheet with Rectangular Structure on the Basis of Experimental Research," Energies, MDPI, vol. 15(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1360-:d:748797
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kerr, Niall & Gouldson, Andy & Barrett, John, 2017. "The rationale for energy efficiency policy: Assessing the recognition of the multiple benefits of energy efficiency retrofit policy," Energy Policy, Elsevier, vol. 106(C), pages 212-221.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Liang & Geoffrey Qiping Shen & Li Guo, 2019. "Optimizing Incentive Policy of Energy-Efficiency Retrofit in Public Buildings: A Principal-Agent Model," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    2. Lauren Giandomenico & Maya Papineau & Nicholas Rivers, 2022. "A Systematic Review of Energy Efficiency Home Retrofit Evaluation Studies," Annual Review of Resource Economics, Annual Reviews, vol. 14(1), pages 689-708, October.
    3. Bambang Santoso Haryono & Abdul Hakim & Mardiono Mardiono & Safri Safri & Qomariyatus Sholihah, 2020. "The Impact of Energy Production, Consumption and Import on the Budgetary Energy Requirement of Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 588-593.
    4. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.
    5. Tziogas, Charalampos & Papadopoulos, Agis & Georgiadis, Patroklos, 2021. "Policy implementation and energy-saving strategies for the residential sector: The case of the Greek Energy Refurbishment program," Energy Policy, Elsevier, vol. 149(C).
    6. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions -- A Simulation-Based Case Study of a Single-Family House in Algeria and Germany," Papers 1904.11496, arXiv.org.
    7. Mališa Đukić & Margareta Zidar, 2021. "Sustainability of Investment Projects with Energy Efficiency and Non-Energy Efficiency Costs: Case Examples of Public Buildings," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    8. Morton, Craig & Wilson, Charlie & Anable, Jillian, 2018. "The diffusion of domestic energy efficiency policies: A spatial perspective," Energy Policy, Elsevier, vol. 114(C), pages 77-88.
    9. Nie, Pu-Yan & Wang, Chan & Yang, Yon-Cong, 2017. "Comparison of energy efficiency subsidies under market power," Energy Policy, Elsevier, vol. 110(C), pages 144-149.
    10. Jovović, Ivana & Cirman, Andreja & Hrovatin, Nevenka & Zorić, Jelena, 2023. "Do social capital and housing-related lifestyle foster energy-efficient retrofits? Retrospective panel data evidence from Slovenia," Energy Policy, Elsevier, vol. 179(C).
    11. Roth, Jonathan & Lim, Benjamin & Jain, Rishee K. & Grueneich, Dian, 2020. "Examining the feasibility of using open data to benchmark building energy usage in cities: A data science and policy perspective," Energy Policy, Elsevier, vol. 139(C).
    12. Tumlison, Creed & Button, Eric D. & Song, Geoboo & Kester, John, 2018. "What explains local policy elites’ preferences toward renewable energy/energy efficiency policy?," Energy Policy, Elsevier, vol. 117(C), pages 377-386.
    13. Brown, Donal & Sorrell, Steve & Kivimaa, Paula, 2019. "Worth the risk? An evaluation of alternative finance mechanisms for residential retrofit," Energy Policy, Elsevier, vol. 128(C), pages 418-430.
    14. Economidou, M. & Ringel, M. & Valentova, M. & Castellazzi, L. & Zancanella, P. & Zangheri, P. & Serrenho, T. & Paci, D. & Bertoldi, P., 2022. "Strategic energy and climate policy planning: Lessons learned from European energy efficiency policies," Energy Policy, Elsevier, vol. 171(C).
    15. Paolo Bertoldi & Marina Economidou & Valentina Palermo & Benigna Boza‐Kiss & Valeria Todeschi, 2021. "How to finance energy renovation of residential buildings: Review of current and emerging financing instruments in the EU," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(1), January.
    16. Luciana Maria Miu & Natalia Wisniewska & Christoph Mazur & Jeffrey Hardy & Adam Hawkes, 2018. "A Simple Assessment of Housing Retrofit Policies for the UK: What Should Succeed the Energy Company Obligation?," Energies, MDPI, vol. 11(8), pages 1-22, August.
    17. Paolo Zangheri & Marina Economidou & Nicola Labanca, 2019. "Progress in the Implementation of the EU Energy Efficiency Directive through the Lens of the National Annual Reports," Energies, MDPI, vol. 12(6), pages 1-16, March.
    18. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions—A Simulation-Based Case Study of a Single-Family-House in Algeria and Germany," Energies, MDPI, vol. 12(8), pages 1-21, April.
    19. Peñasco, Cristina & Anadón, Laura Díaz, 2023. "Assessing the effectiveness of energy efficiency measures in the residential sector gas consumption through dynamic treatment effects: Evidence from England and Wales," Energy Economics, Elsevier, vol. 117(C).
    20. Liu, Guo & Li, Xiaohu & Tan, Yongtao & Zhang, Guomin, 2020. "Building green retrofit in China: Policies, barriers and recommendations," Energy Policy, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1360-:d:748797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.