IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p708-d728127.html
   My bibliography  Save this article

Grid and PV Fed Uninterruptible Induction Motor Drive Implementation and Measurements

Author

Listed:
  • Ruben Rafael Boros

    (Institute of Physics and Electrical Engineering, University of Miskolc, 3515 Miskolc, Hungary)

  • István Bodnár

    (Institute of Physics and Electrical Engineering, University of Miskolc, 3515 Miskolc, Hungary)

Abstract

Motors powered directly from solar panels are becoming more and more popular in pump applications. However, solar panels can be the source of operational issues due to varying irradiance, ambient temperature, weather. This paper shows how it is worth expanding a solar induction motor drive to provide an uninterrupted flow of electricity to the motor. In addition, the main components of the uninterruptible induction motor drive are presented, including the LLC (inductor-inductor-capacitor) converter, the three-phase inverter, and the three-phase rectifier. LLC converters that can increase the voltage from 25–40 V to 330 V cannot be bought directly from manufacturers. Therefore, a custom LLC converter was made for the research. It was necessary to build a custom converter to avoid the use of solar panel strings. This way, solar panels connected in parallel can be used. A low-voltage (25–40 V) supply was implemented from the solar side, while the induction motor requires 230 V AC three-phase voltage in delta connection. For this reason, a voltage boost is required from the low voltage side. The grid feeds the universal DC link through the three-phase rectifier. This allows the motor to consume varying amounts of electricity from the grid or the solar panel. The study also presents in detail the LLC converter that performs the voltage boost. Measuring the entire motor drive, switching transients and efficiencies can be observed at different input voltages for different supplies as well as loads.

Suggested Citation

  • Ruben Rafael Boros & István Bodnár, 2022. "Grid and PV Fed Uninterruptible Induction Motor Drive Implementation and Measurements," Energies, MDPI, vol. 15(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:708-:d:728127
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manuel Escudero & Matteo-Alessandro Kutschak & Francesco Pulsinelli & Noel Rodriguez & Diego Pedro Morales, 2021. "On the Practical Evaluation of the Switching Loss in the Secondary Side Rectifiers of LLC Converters," Energies, MDPI, vol. 14(18), pages 1-23, September.
    2. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    3. Michal Frivaldsky & Slavomir Kascak & Jan Morgos & Michal Prazenica, 2020. "From Non-Modular to Modular Concept of Bidirectional Buck/Boost Converter for Microgrid Applications," Energies, MDPI, vol. 13(12), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruben Rafael Boros & István Bodnár, 2023. "Effect of SPWM Inverter in Combination with Solar Uninterruptible Induction Motor Drive," Energies, MDPI, vol. 16(13), pages 1-20, June.
    2. Víctor Ferreira Gruner & Jefferson William Zanotti & Walbermark Marques Santos & Thiago Antonio Pereira & Lenon Schmitz & Denizar Cruz Martins & Roberto Francisco Coelho, 2023. "Modified Current Sensorless Incremental Conductance Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 16(2), pages 1-16, January.
    3. Domenico Curto & Vincenzo Franzitta & Andrea Guercio & Rosario Miceli & Claudio Nevoloso & Francesco Maria Raimondi & Marco Trapanese, 2022. "An Experimental Comparison between an Ironless and a Traditional Permanent Magnet Linear Generator for Wave Energy Conversion," Energies, MDPI, vol. 15(7), pages 1-21, March.
    4. Danish Khan & Pengfei Hu & Muhammad Waseem & Muhammad Yasir Ali Khan & Mustafa Tahir & Andres Annuk, 2022. "Practical Evaluation of Loss Reduction in Isolated Series Resonant Converter with Fixed Frequency Modulation," Energies, MDPI, vol. 15(16), pages 1-20, August.
    5. Kiran Kumar Geddam & Elangovan Devaraj, 2022. "Real Time Hardware-in-Loop Implementation of LLC Resonant Converter at Worst Operating Point Based on Time Domain Analysis," Energies, MDPI, vol. 15(10), pages 1-19, May.
    6. Efrain Mendez-Flores & Alexandro Ortiz & Israel Macias & Arturo Molina, 2022. "Experimental Validation of an Enhanced MPPT Algorithm and an Optimal DC–DC Converter Design Powered by Metaheuristic Optimization for PV Systems," Energies, MDPI, vol. 15(21), pages 1-35, October.
    7. Alessandro Busacca & Antonino Oscar Di Tommaso & Rosario Miceli & Claudio Nevoloso & Giuseppe Schettino & Gioacchino Scaglione & Fabio Viola & Ilhami Colak, 2022. "Switching Frequency Effects on the Efficiency and Harmonic Distortion in a Three-Phase Five-Level CHBMI Prototype with Multicarrier PWM Schemes: Experimental Analysis," Energies, MDPI, vol. 15(2), pages 1-29, January.
    8. Mahmoud Shahbazi & Niall Andrew Smith & Mousa Marzband & Habib Ur Rahman Habib, 2023. "A Reliability-Optimized Maximum Power Point Tracking Algorithm Utilizing Neural Networks for Long-Term Lifetime Prediction for Photovoltaic Power Converters," Energies, MDPI, vol. 16(16), pages 1-24, August.
    9. Muhammad Ahmed Qureshi & Francesco Torelli & Salvatore Musumeci & Alberto Reatti & Andrea Mazza & Gianfranco Chicco, 2023. "A Novel Adaptive Control Approach for Maximum Power-Point Tracking in Photovoltaic Systems," Energies, MDPI, vol. 16(6), pages 1-18, March.
    10. Reddi Khasim, Shaik & Dhanamjayulu, C., 2021. "Selection parameters and synthesis of multi-input converters for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:708-:d:728127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.