IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p693-d727664.html
   My bibliography  Save this article

Electrical and Mathematical Modeling of Supercapacitors: Comparison

Author

Listed:
  • Zineb Cabrane

    (Department of Electrical and Control Engineering, Mokpo National University, Mokpo 58554, Korea)

  • Soo Hyoung Lee

    (Department of Electrical and Control Engineering, Mokpo National University, Mokpo 58554, Korea)

Abstract

Supercapacitors are energy storage devices with high electrical power densities and long spanlife. Therefore, supercapacitor-based energy storage systems have been employed for a variety of applications. The modelling and simulation of SCs have been of great interest to this objective. This paper presents an electrical schema and mathematical modelling of three models of supercapacitors. The first is the RC model, the second is the two-branch model and the third is the multi-branch model. The objective of this modelling is to choose the best model that can respect the same behaviour of the experimental model. These models are compared with an experimental model. This comparison prove that the response voltage of the multi-branch model correctly describes the behaviour of the experimental model of Belhachemi. The disadvantage of this model is the slow simulation duration in MATLAB/Simulink. The RC model represented the faster model in terms of simulation. The choice of 15 branches in parallel in multi-branch models gives good results and correctly describes the reel model. The automatic charge and discharge voltage of SCs reduce by reducing the charge current.

Suggested Citation

  • Zineb Cabrane & Soo Hyoung Lee, 2022. "Electrical and Mathematical Modeling of Supercapacitors: Comparison," Energies, MDPI, vol. 15(3), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:693-:d:727664
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/693/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/693/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed M. Fares & Matias Kippke & Mohamed Rashed & Christian Klumpner & Serhiy Bozhko, 2021. "Development of a Smart Supercapacitor Energy Storage System for Aircraft Electric Power Systems," Energies, MDPI, vol. 14(23), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kunwar, Ria & Pal, Bhupender & Izwan Misnon, Izan & Daniyal, Hamdan & Zabihi, Fatemeh & Yang, Shengyuan & Sofer, Zděnek & Yang, Chun-Chen & Jose, Rajan, 2023. "Characterization of electrochemical double layer capacitor electrode using self-discharge measurements and modeling," Applied Energy, Elsevier, vol. 334(C).
    2. Ji, Jie & Zhou, Mengxiong & Guo, Renwei & Tang, Jiankang & Su, Jiaoyue & Huang, Hui & Sun, Na & Nazir, Muhammad Shahzad & Wang, Yaodong, 2023. "A electric power optimal scheduling study of hybrid energy storage system integrated load prediction technology considering ageing mechanism," Renewable Energy, Elsevier, vol. 215(C).
    3. Ģirts Staņa & Jānis Voitkāns & Kaspars Kroičs, 2023. "Supercapacitor Constant-Current and Constant-Power Charging and Discharging Comparison under Equal Boundary Conditions for DC Microgrid Application," Energies, MDPI, vol. 16(10), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammed Y. Worku, 2022. "Recent Advances in Energy Storage Systems for Renewable Source Grid Integration: A Comprehensive Review," Sustainability, MDPI, vol. 14(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:693-:d:727664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.