IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p686-d727371.html
   My bibliography  Save this article

Analyzing Various Aspects of Network Losses in Peer-to-Peer Electricity Trading

Author

Listed:
  • SungJoong Kim

    (Electric Power Network and Economics Laboratory, Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

  • YeonOuk Chu

    (Electric Power Network and Economics Laboratory, Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

  • HyunJoong Kim

    (Electric Power Network and Economics Laboratory, Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

  • HyungTae Kim

    (EnDK Inc., 48 Digital-ro 33-gil, Guro-gu, Seoul 08377, Korea)

  • HeeSeung Moon

    (Electric Power Network and Economics Laboratory, Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

  • JinHo Sung

    (Electric Power Network and Economics Laboratory, Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

  • YongTae Yoon

    (Electric Power Network and Economics Laboratory, Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

  • YoungGyu Jin

    (Department of Electrical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Korea)

Abstract

In this study, we examined the impacts of peer-to-peer (P2P) electricity trading on the power losses in the network, which is one of the objectives optimized in the centralized approach. For this purpose, we reviewed the conventional loss management schemes and suggested the requirements to be considered in the design of P2P electricity trading. Then, we described a new loss management framework for P2P transactions and introduced the concept of the transaction guide. Based on the proposed framework, we simulated the P2P transactions with and without the transaction guide and examined the variation in the network losses. Three noteworthy remarks are derived from the simulation in this paper. First, the random characteristics of P2P trading itself do not guarantee favorable transaction ordering in terms of network losses, but when the new loss management framework is applied, the network losses can be effectively decreased. Second, through the new loss management framework, loss costs can be fairly allocated to individual prosumers. Third, to invigorate the P2P electricity trading, an incentive program should be considered to alleviate the burden of loss costs of the first trader in the P2P electricity trading.

Suggested Citation

  • SungJoong Kim & YeonOuk Chu & HyunJoong Kim & HyungTae Kim & HeeSeung Moon & JinHo Sung & YongTae Yoon & YoungGyu Jin, 2022. "Analyzing Various Aspects of Network Losses in Peer-to-Peer Electricity Trading," Energies, MDPI, vol. 15(3), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:686-:d:727371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akorede, Mudathir Funsho & Hizam, Hashim & Pouresmaeil, Edris, 2010. "Distributed energy resources and benefits to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 724-734, February.
    2. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. SungJoong Kim & YongTae Yoon & YoungGyu Jin, 2022. "Price-Guided Peer-To-Peer Trading Scheme and Its Effects on Transaction Costs and Network Losses," Energies, MDPI, vol. 15(21), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    2. Salla Annala & Lurian Klein & Luisa Matos & Sirpa Repo & Olli Kilkki & Arun Narayanan & Samuli Honkapuro, 2021. "Framework to Facilitate Electricity and Flexibility Trading within, to, and from Local Markets," Energies, MDPI, vol. 14(11), pages 1-20, May.
    3. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    4. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    5. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    6. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    7. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    8. Chandel, S.S. & Shrivastva, Rajnish & Sharma, Vikrant & Ramasamy, P., 2016. "Overview of the initiatives in renewable energy sector under the national action plan on climate change in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 866-873.
    9. Matteo Vaccargiu & Andrea Pinna & Roberto Tonelli & Luisanna Cocco, 2023. "Blockchain in the Energy Sector for SDG Achievement," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    10. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    11. Urooj Javed & Saif Ullah & Muhammad Imran & Asif Iqbal Malik & Nokhaiz Tariq Khan, 2021. "Power Distribution Network Expansion and Location Optimization of Additional Facilities: A Case Study," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    12. Mukherjee, Monish & Hardy, Trevor & Fuller, Jason C. & Bose, Anjan, 2022. "Implementing multi-settlement decentralized electricity market design for transactive communities with imperfect communication," Applied Energy, Elsevier, vol. 306(PA).
    13. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    14. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2021. "Cooperative negawatt P2P energy trading for low-voltage distribution networks," Applied Energy, Elsevier, vol. 299(C).
    15. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    16. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    17. Moura, Ricardo & Brito, Miguel Centeno, 2019. "Prosumer aggregation policies, country experience and business models," Energy Policy, Elsevier, vol. 132(C), pages 820-830.
    18. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    19. Maroufmashat, Azadeh & Elkamel, Ali & Fowler, Michael & Sattari, Sourena & Roshandel, Ramin & Hajimiragha, Amir & Walker, Sean & Entchev, Evgueniy, 2015. "Modeling and optimization of a network of energy hubs to improve economic and emission considerations," Energy, Elsevier, vol. 93(P2), pages 2546-2558.
    20. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:686-:d:727371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.